A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We present a step-by-step protocol for the isolation of long-term hematopoietic stem cells (LT-HSCs) and short-term HSCs (ST-HSCs) using the Hoxb5 reporter system.
Self-renewal capacity and multi-lineage differentiation potential are generally regarded as the defining characteristics of hematopoietic stem cells (HSCs). However, numerous studies have suggested that functional heterogeneity exists in the HSC compartment. Recent single-cell analyses have reported HSC clones with different cell fates within the HSC compartment, which are referred to as biased HSC clones. The mechanisms underlying heterogeneous or poorly reproducible results are little understood, especially regarding the length of self-renewal when purified HSC fractions are transplanted by conventional immunostaining. Therefore, establishing a reproducible isolation method for long-term HSCs (LT-HSCs) and short-term HSCs (ST-HSCs), defined by the length of their self-renewal, is crucial for overcoming this issue. Using unbiased multi-step screening, we identified a transcription factor, Hoxb5, which may be an exclusive marker of LT-HSCs in the mouse hematopoietic system. Based on this finding, we established a Hoxb5 reporter mouse line and successfully isolated LT-HSCs and ST-HSCs. Here we describe a detailed protocol for the isolation of LT-HSCs and ST-HSCs using the Hoxb5 reporter system. This isolation method will help researchers better understand the mechanisms of self-renewal and the biological basis for such heterogeneity in the HSC compartment.
Hematopoietic stem cells (HSCs), which possess self-renewal capacity and multipotency, reside at the apex of the hematopoietic hierarchy1,2. In 1988, Weissman and colleagues demonstrated for the first time that the isolation of mouse HSCs could be achieved using flow cytometry3. Subsequently, a fraction defined by a combination of cell surface markers, Lineage−c-Kit+Sca-1+CD150+CD34−/loFlk2−, was reported to contain all HSCs in mice4,5,6,7,8.
Immunophenotypically defined (Lineage−c-Kit+Sca-1+CD150+CD34−/loFlk2−) HSCs (hereafter, pHSCs) were previously considered functionally homogeneous. However, recent single-cell analyses have revealed that pHSCs still exhibit heterogeneity with respect to their self-renewal capacity9,10 and multipotency11,12. Specifically, two populations seem to exist in the pHSC fraction with regard to their self-renewal capacity: long-term hematopoietic stem cells (LT-HSCs), which have continuous self-renewal capacity, and short-term hematopoietic stem cells (ST-HSCs), which have transient self-renewal capacity9,10.
To date, the molecular mechanisms of self-renewal capacity that distinguish LT-HSCs and ST-HSCs remain poorly understood. It is crucial to isolate both cell populations based on their self-renewal capacities and to discover underlying molecular mechanisms. Several reporter systems have also been introduced to purify LT-HSCs13,14,15; however, the LT-HSC purity defined by each reporter system is variable, and exclusive LT-HSC purification has not been achieved to date.
Therefore, developing an isolation system for LT-HSCs and ST-HSCs will accelerate research regarding self-renewal capacity in the pHSC fraction. In the isolation of LT-HSCs and ST-HSCs, a study using multi-step, unbiased screening identified a single gene, Hoxb5, that is heterogeneously expressed in the pHSC fraction16. Additionally, bone marrow analysis of the Hoxb5 reporter mice revealed that approximately 20%-25% of the pHSC fraction consists of Hoxb5pos cells. A competitive transplantation assay using Hoxb5pos pHSCs and Hoxb5neg pHSCs revealed that only Hoxb5pos pHSCs possess long-term self-renewal capacity, while Hoxb5neg pHSCs lose their self-renewal capacity within a short period, indicating that Hoxb5 identifies LT-HSCs in the pHSC fraction16.
Here, we demonstrate a step-by-step protocol to isolate LT-HSCs and ST-HSCs using the Hoxb5 reporter system. In addition, we present a competitive transplantation assay to assess the self-renewal capacity of Hoxb5pos/neg pHSCs (Figure 1). This Hoxb5 reporter system allows us to prospectively isolate LT-HSCs and ST-HSCs and contributes to the understanding of LT-HSC-specific characteristics.
All the animal experiments described were approved by the RIKEN Center for Biosystems Dynamics Research.
1. Preconditioning of the recipient mice
2. Collection of the donor bone marrow cells
3. Separation of the c-kit+ cells by magnetic sorting
4. Hematopoietic stem cell staining
5. Supporting cell preparation
6. Hoxb5pos or Hoxb5neg pHSC sorting
7. Transplantation
8. Peripheral blood analysis
Previously, self-renewal capacity has been measured using competitive transplantation assays, in which donor HSCs are thought to retain their self-renewal capacity only if multi-lineage donor cells in the recipient peripheral blood are observed17. In addition, several reports define LT-HSCs as cells that continue to produce peripheral blood cells several months after the second bone marrow transplantation10,18. Therefore, in order to compa...
Traditionally, cell surface marker-defined HSCs have been prepared to study the functions of HSCs, such as self-renewal capacity and multi-potency19,20,21. However, the immunophenotypically defined (Lineage−c-Kit+Sca-1+CD150+CD34−/loFlk2−) HSC fraction contains two discrete HSC populations: LT-HSCs and ST-HSCs9<...
The authors declare no conflicts of interest associated with this study.
We gratefully acknowledge Hiroshi Kiyonari for the animal care and for providing recipient mice at RIKEN BDR, as well as Hitomi Oga, Kayoko Nagasaka, and Masaki Miyahashi for laboratory management at Kobe University. The authors also greatly appreciate the ongoing support for this work. Masanori Miyanishi was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP17K07407 and JP20H03268, The Mochida Memorial Foundation for Medical and Pharmaceutical Research, The Life Science Foundation of Japan, The Takeda Science Foundation, The Astellas Foundation for Research on Metabolic Disorders, and AMED-PRIME, AMED under Grant Number JP18gm6110020. Taro Sakamaki is supported by JSPS KAKENHI Grant Numbers JP21K20669 and JP22K16334 and was supported by the JSPS Core-to-Core Program and RIKEN Junior Research Associate Program. Katsuyuki Nishi was supported by JSPS Grant Number KAKENHI JP18J13408.
Name | Company | Catalog Number | Comments |
0.2 mL Strip of 8 Tubes, Dome Cap | SSIbio | 3230-00 | |
0.5M EDTA pH 8.0 | Iinvtrogen | AM9260G | |
100 µm Cell Strainer | Falcon | 352360 | |
30G insulin syringe | BD | 326668 | |
40 µm Cell Strainer | Falcon | 352340 | |
5 mL Round Bottom Polystyrene Test Tube, with Cell Strainer Snap Cap | FALCON | 352235 | |
7-AAD Viability Staining Solution | BioLegend | 420404 | |
96 well U-Bottom | FALCON | 351177 | |
Anti-APC-MicroBeads | Milteny biotec | 130-090-855 | |
Aspirator with trap flask | Biosan | FTA-1 | |
B220-Alexa Fluor 700 (RA3-6B2) | BioLegend | 103232 | |
B220-Biotin (RA3-6B2) | BioLegend | 103204 | |
B220-BV786 (RA3-6B2) | BD Biosciences | 563894 | |
B6.CD45.1 congenic mice | Sankyo Labo Service | N/A | |
Baytril 10% | BAYER | 341106546 | |
BD FACS Aria II special order system | BD | N/A | |
Brilliant stain buffer | BD | 566349 | |
CD11b-Alexa Fluor 700 (M1/70) | BioLegend | 101222 | |
CD11b-Biotin (M1/70) | BioLegend | 101204 | |
CD11b-BUV395 (M1/70) | BD Biosciences | 563553 | |
CD11b-BV711 (M1/70) | BD Biosciences | 563168 | |
CD127-Alexa Fluor 700 (A7R34) | Invitrogen | 56-1271-82 | |
CD150-BV421 (TC15-12F12.2) | BioLegend | 115943 | |
CD16/CD32-Alexa Fluor 700 (93) | Invitrogen | 56-0161-82 | |
CD34-Alexa Fluor 647 (RAM34) | BD Biosciences | 560230 | |
CD34-FITC (RAM34) | Invitrogen | 11034185 | |
CD3-Alexa Fluor 700 (17A2) | BioLegend | 100216 | |
CD3ε -Biotin (145-2C11) | BioLegend | 100304 | |
CD3ε -BV421 (145-2C11) | BioLegend | 100341 | |
CD45.1/CD45.2 congenic mice | N/A | N/A | Bred in our Laboratory |
CD45.1-FITC (A20) | BD Biosciences | 553775 | |
CD45.2-PE (104) | BD Biosciences | 560695 | |
CD4-Alexa Fluor 700 (GK1.5) | BioLegend | 100430 | |
CD4-Biotin (GK1.5) | BioLegend | 100404 | |
CD8a-Alexa Fluor 700 (53-6.7) | BioLegend | 100730 | |
CD8a-Biotin (53-6.7) | BioLegend | 100704 | |
Centrifuge Tube 15ml | NICHIRYO | 00-ETS-CT-15 | |
Centrifuge Tube 50ml | NICHIRYO | 00-ETS-CT-50 | |
c-Kit-APC-eFluor780 (2B8) | Invitrogen | 47117182 | |
D-PBS (-) without Ca and Mg, liquid | Nacalai | 14249-24 | |
Fetal Bovine Serum | Thermo Fisher | 10270106 | |
Flk2-PerCP-eFluor710 (A2F10) | eBioscience | 46135182 | |
FlowJo version 10 | BD Biosciences | https://www.flowjo.com/solutions/flowjo | |
Gmmacell 40 Exactor | Best theratronics | N/A | |
Gr-1-Alexa Fluor 700 (RB6-8C5) | BioLegend | 108422 | |
Gr-1-Biotin (RB6-8C5) | BioLegend | 108404 | |
Hoxb5-tri-mCherry mice (C57BL/6J background) | N/A | N/A | Bred in our Laboratory |
IgG from rat serum, technical grade, >=80% (SDS-PAGE), buffered aqueous solution | Sigma-Aldrich | I8015-100MG | |
isoflurane | Pfizer | 4987-114-13340-3 | |
Kimwipes S200 | NIPPON PAPER CRECIA | 6-6689-01 | |
LS Columns | Milteny biotec | 130-042-401 | |
Lysis buffer | BD | 555899 | |
MACS MultiStand | Milteny biotec | 130-042-303 | |
Microplate for Tissue Culture (For Adhesion Cell) 6Well | IWAKI | 3810-006 | |
MidiMACS Separator | Milteny biotec | 130-042-302 | |
Mouse Pie Cages | Natsume Seisakusho | KN-331 | |
Multipurpose refrigerated Centrifuge | TOMY | EX-125 | |
NARCOBIT-E (II) | Natsume Seisakusho | KN-1071-I | |
NK-1.1-PerCP-Cy5.5 (PK136) | BioLegend | 108728 | |
Penicillin-Streptomycin Mixed Solution | nacalai | 26253-84 | |
Porcelain Mortar φ120mm with Pestle | Asone | 6-549-03 | |
Protein LoBind Tube 1.5 mL | Eppendorf | 22431081 | |
Sca-I-BUV395 (D7) | BD Biosciences | 563990 | |
Stainless steel scalpel blade | FastGene | FG-B2010 | |
Streptavidin-BUV737 | BD Biosciences | 612775 | |
SYTOX-red | Invitrogen | S34859 | |
Tailveiner Restrainer for Mice standard | Braintree | TV-150 STD | |
TCRb-BV421 (H57-597) | BioLegend | 109230 | |
Ter-119-Alexa Fluor 700 (TER-119) | BioLegend | 116220 | |
Ter-119-Biotin (TER-119) | BioLegend | 116204 | |
Terumo 5ml Concentric Luer-Slip Syringe | TERUMO | SS-05LZ | |
Terumo Hypodermic Needle 23G x 1 | TERUMO | NN-2325-R |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved