JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Biology

Isolation Method for Long-Term and Short-Term Hematopoietic Stem Cells

Published: May 19th, 2023

DOI:

10.3791/64488

1Hematopoietic Stem Cell Biology and Medical Innovation (HSCBMI), Department of Pediatrics, Kobe University Graduate School of Medicine, 2RIKEN Center for Biosystems Dynamics Research

Abstract

Self-renewal capacity and multi-lineage differentiation potential are generally regarded as the defining characteristics of hematopoietic stem cells (HSCs). However, numerous studies have suggested that functional heterogeneity exists in the HSC compartment. Recent single-cell analyses have reported HSC clones with different cell fates within the HSC compartment, which are referred to as biased HSC clones. The mechanisms underlying heterogeneous or poorly reproducible results are little understood, especially regarding the length of self-renewal when purified HSC fractions are transplanted by conventional immunostaining. Therefore, establishing a reproducible isolation method for long-term HSCs (LT-HSCs) and short-term HSCs (ST-HSCs), defined by the length of their self-renewal, is crucial for overcoming this issue. Using unbiased multi-step screening, we identified a transcription factor, Hoxb5, which may be an exclusive marker of LT-HSCs in the mouse hematopoietic system. Based on this finding, we established a Hoxb5 reporter mouse line and successfully isolated LT-HSCs and ST-HSCs. Here we describe a detailed protocol for the isolation of LT-HSCs and ST-HSCs using the Hoxb5 reporter system. This isolation method will help researchers better understand the mechanisms of self-renewal and the biological basis for such heterogeneity in the HSC compartment.

Explore More Videos

Keywords Hematopoietic Stem Cells

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved