A subscription to JoVE is required to view this content. Sign in or start your free trial.
The present protocol describes a detailed benchtop catalytic method that yields a unique borylated derivative of ibuprofen.
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most common drugs used to manage and treat pain and inflammation. In 2016, a new class of boron functionalized NSAIDs (bora-NSAIDs) was synthesized under mild conditions via the copper-catalyzed regioselective boracarboxylation of vinyl arenes using carbon dioxide (CO2 balloon) and a diboron reductant at room temperature. This original method was performed primarily in a glovebox or with a vacuum gas manifold (Schlenk line) under rigorous air-free and moisture-free conditions, which often led to irreproducible reaction outcomes due to trace impurities. The present protocol describes a simpler and more convenient benchtop method for synthesizing a representative bora-NSAID, bora-ibuprofen. A Suzuki-Miyaura cross-coupling reaction between 1-bromo-4-isobutylbenzene and vinylboronic acid pinacol ester produces 4-isobutylstyrene. The styrene is subsequently boracarboxylated regioselectively to provide bora-ibuprofen, an α-aryl-β-boryl-propionic acid, with good yield on a multi-gram scale. This procedure allows for the broader utilization of copper-catalyzed boracarboxylation in synthetic laboratories, enabling further research on bora-NSAIDs and other unique boron-functionalized drug-like molecules.
Organoboron compounds have been strategically employed in chemical synthesis for over 50 years1,2,3,4,5,6. Reactions such as hydroboration-oxidation7,8,9,10, halogenation11,12, amination13,14, and Suzuki-Miyaura cross-couplin....
1. Synthesis of 4-isobutylstyrene through Suzuki cross-coupling of 1-bromo-4-isobutylbenzene with vinylboronic acid pinacol ester
The 4-isobutylstyrene was characterized by 1H and 13C NMR spectroscopy. The bora-ibuprofen was characterized by 1H, 13C, and 11B NMR spectroscopy to confirm the product structure and assess the purity. The key data for these compounds are described in this section.
The spectral data are in good agreement with the structure of 4-isobutylstyrene (1) (Figure 2). The 1.......
The 4-Isobutylstyrene (1) was obtained efficiently via a Suzuki cross-coupling reaction from inexpensive, commercially available 1-bromo-4-isobutylbenzene and vinylboronic acid pinacol ester. Compared to the Wittig approach, this reaction allows for the production of the desired styrene in a more environmentally friendly manner and with better atom economy. Reaction monitoring via TLC was crucial to ensure full conversion of the 1-bromo-4-isobutylbenzene substrate because reactions not .......
The authors declare no competing financial interests.
We would like to thank the National Science Foundation CAREER and MRI programs (CHE-1752986 and CHE-1228336), the West Virginia University Honors EXCEL Thesis Program (ASS & ACR), the West Virginia University Research Apprenticeship (RAP) and Summer Undergraduate Research Experience (SURE) Programs (ACR), and the Brodie family (Don and Linda Brodie Resource Fund for Innovation) for their generous support of this research.
....Name | Company | Catalog Number | Comments |
125 mL filtration flask | ChemGlass | ||
20 mL vial with pressure relief cap | ChemGlass | ||
4-isobutylbromobenzene | Matrix scientific | 8824 | |
Anhydrous potassium carbonate | Beantown chemicals | 124060 | |
Anhydrous sodium sulfate | Oakwood | 44702 | |
Bis(pinacolato)diboron | Boron Molecular chemicals | BM002 | |
Buchner funnel with rubber adaptor | ChemGlass | ||
Carbon dioxide gas (Bone dry) | Mateson | Tygon tubing connects cylinder regulator to needle used for reaction purging | |
COPPER(I) CHLORIDE, REAGENT GRADE, 97% | Aldrich | 212946 | |
Dichloromthane - high purity | Fisher | D37-20 | |
Diethyl ether - high purity | Fisher | E138-20 | |
Erlenmyer Flask, 125 mL | ChemGlass | CG-8496-125 | |
filter paper | Fisher | ||
Heptane | Fisher | H360-4 | |
Hydrochloric acid | Fisher | AC124635001 | |
IKA stirring hot plate | Fisher | 3810001 RCT Basic MAG | |
Nitrogen filled glove box | MBRAUN | ||
Palladium(0) tetrakistriphenylphosine | Ark Pharm | ||
SilicaFlash P60 silica gel | SiliCycle | R12030B | |
Sodium bicarbonate | Fisher | S233-3 | |
Sodium tert-butoxide | Fisher | A1994222 | |
Tetrahydrofuran - high purity | Fisher | T425SK-4 | Dried on a GlassContours Solvent Purification System |
Triphenylphosphine | Sigma | T84409 | |
Vacuum/gas manifold | Used for glovebox boracarboxyaltion reaction setup | ||
Vinylboronic acid pinacol ester | Oxchem |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved