JoVE Logo
Faculty Resource Center

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Chemistry

Synthesis of a Borylated Ibuprofen Derivative Through Suzuki Cross-Coupling and Alkene Boracarboxylation Reactions

Published: November 30th, 2022

DOI:

10.3791/64571

1C. Eugene Bennett Department of Chemistry, West Virginia University
* These authors contributed equally

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most common drugs used to manage and treat pain and inflammation. In 2016, a new class of boron functionalized NSAIDs (bora-NSAIDs) was synthesized under mild conditions via the copper-catalyzed regioselective boracarboxylation of vinyl arenes using carbon dioxide (CO2 balloon) and a diboron reductant at room temperature. This original method was performed primarily in a glovebox or with a vacuum gas manifold (Schlenk line) under rigorous air-free and moisture-free conditions, which often led to irreproducible reaction outcomes due to trace impurities. The present protocol describes a simpler and more convenient benchtop method for synthesizing a representative bora-NSAID, bora-ibuprofen. A Suzuki-Miyaura cross-coupling reaction between 1-bromo-4-isobutylbenzene and vinylboronic acid pinacol ester produces 4-isobutylstyrene. The styrene is subsequently boracarboxylated regioselectively to provide bora-ibuprofen, an α-aryl-β-boryl-propionic acid, with good yield on a multi-gram scale. This procedure allows for the broader utilization of copper-catalyzed boracarboxylation in synthetic laboratories, enabling further research on bora-NSAIDs and other unique boron-functionalized drug-like molecules.

Explore More Videos

Keywords Suzuki Cross coupling

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved