A subscription to JoVE is required to view this content. Sign in or start your free trial.
The choroid plexus (CP), an understudied tissue in neuroscience, plays a key role in health and disease of the central nervous system. This protocol describes a microdissection technique for isolating the CP and the use of scanning electron microscopy to obtain an overall view of its cellular structure.
The choroid plexus (CP), a highly vascularized structure protruding into the ventricles of the brain, is one of the most understudied tissues in neuroscience. As it is becoming increasingly clear that this tiny structure plays a crucial role in health and disease of the central nervous system (CNS), it is of utmost importance to properly dissect the CP out of the brain ventricles in a way that allows downstream processing, ranging from functional to structural analysis. Here, isolation of the lateral and fourth brain ventricle mouse CP without the need for specialized tools or equipment is described. This isolation technique preserves the viability, function, and structure of cells within the CP. On account of its high vascularization, the CP can be visualized floating inside the ventricular cavities of the brain using a binocular microscope. However, transcardial perfusion required for downstream analysis can complicate the identification of the CP tissue. Depending on the further processing steps (e.g., RNA and protein analysis), this can be solved by visualizing the CP via transcardial perfusion with bromophenol blue. After isolation, the CP can be processed using several techniques, including RNA, protein, or single cell analysis, to gain further understanding on the function of this special brain structure. Here, scanning electron microscopy (SEM) on whole mount CP is used to get an overall view of the structure.
Tight barriers separate the central nervous system (CNS) from the periphery, including the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. These barriers protect the CNS against external insults and ensure a balanced and controlled microenvironment1,2,3. While the BBB has been extensively studied over time, the blood-CSF barrier located at the choroid plexus (CP) has only gained increasing research interest during the last decade. This latter barrier can be found in the four ventricles of the brain (Figure 1A, B....
All animal experiments described in this study were conducted according to the national (Belgian Law 14/08/1986 and 22/12/2003, Belgian Royal Decree 06/04/2010) and European legislation (EU Directives 2010/63/EU, 86/609/EEC). All experiments on mice and animal protocols were approved by the ethics committee of Ghent University (permit numbers LA1400091 and EC 2017-026).
1. Preparation
The described protocol facilitates the efficient isolation of the CP from the mouse brain lateral (Figure 2A-C) and fourth (Figure 2D-F)Â ventricles. After isolating the whole brain, forceps are used to sagittally hemisect the brain and identify the CPs floating in the lateral ventricles. The CP from the fourth ventricle can be isolated from the cerebellar side of the brain. Perfusion with b.......
Here, a method to isolate the choroid plexus (CP) out of the lateral ventricle and the fourth ventricle of a mouse brain is described. This whole mounting method of the CP facilitates further analysis using a repertoire of techniques to get a complete view of the CP morphology, cellular composition, transcriptome, proteome, and secretome. Such analyses are crucial to gain a better understanding of this remarkable structure protruding from the ventricles of the brain. This knowledge is of immense research interest, as it .......
This work was supported by the Belgian Foundation of Alzheimer's Research (SAO; project number: 20200032), the Research Foundation Flanders (FWO Vlaanderen; project numbers: 1268823N, 11D0520N, 1195021N) and the Baillet Latour Fund. We thank the VIB BioImaging Core for training, support, and access to the instrument park.
....Name | Company | Catalog Number | Comments |
26G x 1/2 needle | Henke Sass Wolf | 4710004512 | |
Aluminium specimen mounts | EM Sciences | 75220 | |
Cacodylate buffer | EM Sciences | 11652 | |
Carbon steel surgial blades | Swann-Morton | 0210 | size: 0.45 mm x 12 mm |
Carbon adhesive tabs -12 mm | EM Sciences | 77825-12 | |
Critical point dryer | Bal-Tec | CPD030 | |
Crossbeam 540 | Zeiss | SEM system | |
Forceps | Fine Science Tools GmbHÂ | 91197-00 | |
Glutaraldehyde | EM Sciences | 16220 | |
Heparin | Sigma-Aldrich | H-3125 | |
Ismatec Reglo ICC Digital Peristaltic pump 2-channel | Metrohm Belgium N.V | CPA-7800160 | |
Osmium Tetroxide | EM Sciences | 19170 | |
Paraformaldehyde | Sigma-Aldrich | P6148 | |
Phosphate buffered saline (PBS) | Lonza | BE17-516F | |
Platinum | Quorum | Q150T ES | PBS without Ca++ Mg++ or phenol red; sterile filtered |
Sodium pentobarbital | Kela NV | 514 | |
Specimen Basket Stainless Steel | EM Sciences | 70190-01 | |
Stemi DV4 Stereo microscope | Zeiss | ||
Surgical scissors | Fine Science Tools GmbHÂ | 91460-11 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved