Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, a protocol for formulating lipid nanoparticles (LNPs) that encapsulate mRNA encoding firefly luciferase is presented. These LNPs were tested for their potency in vitro in HepG2 cells and in vivo in C57BL/6 mice.

Abstract

Lipid nanoparticles (LNPs) have attracted widespread attention recently with the successful development of the COVID-19 mRNA vaccines by Moderna and Pfizer/BioNTech. These vaccines have demonstrated the efficacy of mRNA-LNP therapeutics and opened the door for future clinical applications. In mRNA-LNP systems, the LNPs serve as delivery platforms that protect the mRNA cargo from degradation by nucleases and mediate their intracellular delivery. The LNPs are typically composed of four components: an ionizable lipid, a phospholipid, cholesterol, and a lipid-anchored polyethylene glycol (PEG) conjugate (lipid-PEG). Here, LNPs encapsulating mRNA encoding firefly luciferase are formulated by microfluidic mixing of the organic phase containing LNP lipid components and the aqueous phase containing mRNA. These mRNA-LNPs are then tested in vitro to evaluate their transfection efficiency in HepG2 cells using a bioluminescent plate-based assay. Additionally, mRNA-LNPs are evaluated in vivo in C57BL/6 mice following an intravenous injection via the lateral tail vein. Whole-body bioluminescence imaging is performed by using an in vivo imaging system. Representative results are shown for the mRNA-LNP characteristics, their transfection efficiency in HepG2 cells, and the total luminescent flux in C57BL/6 mice.

Introduction

Lipid nanoparticles (LNPs) have demonstrated great promise in recent years in the field of non-viral gene therapy. In 2018, the United States Food and Drug Administration (FDA) approved the first-ever RNA interference (RNAi) therapeutic, Onpattro by Alnylam, for the treatment of hereditary transthyretin amyloidosis1,2,3,4. This was an important step forward for lipid nanoparticles and RNA-based therapies. More recently, Moderna and Pfizer/BioNTech received FDA approvals for their mRNA-LNP vaccines against SARS-CoV-24<....

Protocol

NOTE: Always maintain RNase-free conditions when formulating mRNA-LNPs by wiping the surfaces and equipment with a surface decontaminant for RNases and DNA. Use only RNase-free tips and reagents.

All the animal procedures were performed in accordance with the Guidelines for the Care and Use of Laboratory Animals at the University of Pennsylvania and a protocol approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Pennsylvania.

Representative Results

mRNA-LNPs were formulated using a microfluidic instrument that possessed an average hydrodynamic diameter of 76.16 nm and a polydispersity index of 0.098. The pKa of the mRNA-LNPs was found to be 5.75 by performing a TNS assay18. The encapsulation efficiency for these mRNA-LNPs was calculated to be 92.3% by using the modified fluorescence assay and equation 4.4. The overall RNA concentration that was used for the cell treatment and animal dosing was 40.24 ng/&#.......

Discussion

With this workflow, a variety of mRNA-LNPs can be formulated and tested for their in vitro and in vivo efficiency. Ionizable lipids and excipients can be swapped out and combined at different molar ratios and different ionizable lipid to mRNA weight ratios to produce mRNA-LNPs with differing physicochemical properties22. Here, we formulated C12-200 mRNA-LNPs with a molar ratio of 35/16/46.5/2.5 (ionizable lipid:helper lipid:cholesterol:lipid-PEG) at a 10:1 ionizable lipid to mRNA.......

Acknowledgements

M.J.M. acknowledges support from a US National Institutes of Health (NIH) Director’s New Innovator Award (DP2 TR002776), a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), a US National Science Foundation CAREER award (CBET-2145491), and additional funding from the National Institutes of Health (NCI R01 CA241661, NCI R37 CA244911, and NIDDK R01 DK123049).

....

Materials

NameCompanyCatalog NumberComments
0.1 M Hydrochloric AcidSigma7647-01-0
0.22 μm Syringe FiltersGenesee25-243
1 mL BD Slip Tip SyringeBD309659
1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) (C14-PEG2000)Avanti Polar Lipids880150P
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)Avanti Polar Lipids850725P
1.5 mL Eppendorf TubesFisher Scientific05-408-129
15 mL Conical TubesFisher Scientific14-959-70C
200 proof EthanolDecon Labs2716
23G NeedlesFisher Scientific14-826-6C
3 mL BD Disposable Syringes with Luer-Lok tipsFisher Scientific14-823-435
3 mL Dialysis CassettesThermo ScientificA52976
96 Well Black Wall Black Bottom PlateFisher Scientific07-000-135
96 Well White/Clear Bottom Plate, TC SurfaceThermo Scientific165306
Ammonium Acetate, 1 KilogramResearch Products International 631-61-8
Ammonium Citrate dibasicSIgma3012-65-5
BD Luer-Lok Syringe sterile, single use, 5 mLBD309646
C12-200 Ionizable LipidCayman Chemical36699
C57BL/6 MiceJackson Laboratory000664
CholesterolSigma57-88-5
CleanCap FLuc mRNA (5moU)TriLink BiotechnologiesL-7202
Disposable cuvettesFisher Scientific14955129
D-Luciferin, Potassium SaltThermo ScientificL2916
DMEM, high glucoseThermofisher Scientific11965-084
Exel Insulin Syringes - 0.5 mLFisher Scientific1484132
Fetal Bovine SerumCorning35-010-CV
Hep G2 [HEPG2]ATCCHB-8065
HyPure Molecular Biology Grade WaterCytivaSH30538.03
Infinite 200 PRO Plate ReaderTecanN/A
IVIS Spectrum In Vivo Imaging SystemPerkin ElmerN/A
Large KimwipesFisher Scientific06-666-11D
Luciferase Assay KitPromegaE4550
NanoAssemblr Ignite Cartridges - Classic - 100 PackPrecision NanosystemsNIN0065
NanoAssemblr Ignite InstrumentPrecision NanosystemsNIN0001
PBS - Phosphate-Buffered Saline (10x) pH 7.4, RNase-freeThermo ScientificAM9624
Penicillin-StreptomycinThermofisher Scientific15140122
QB Citrate Buffer, (Citrate 100 mM) pH 3.0TeknovaQ2442
Quant-it RiboGreen RNA Assay KitThermo ScientificR11490
Reporter Lysis 5x BufferPromegaE3971
RNase Away Surface DecontaminantThermofisher Scientific7000TS1
Sodium ChlorideSigma7647-14-5
Sodium HydroxideSigma1310-73-2
Sodium PhosphateSigma7601-54-9
TNS reagent (6-(p-Toluidino)-2-naphthalenesulfonic acid sodium salt)SigmaT9792
Triton X-100Sigma9036-19-5
ZetasizerMalvern PanalyticalNanoZS

References

  1. Cheng, Q., et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nature Nanotechnology. 15 (4), 313-320 (2020).
  2. Wood, H.

Explore More Articles

MRNA lipid NanoparticlesMicrofluidic MixingLipid Nanoparticle FormulationIn Vitro TestingIn Vivo TestingLipid ComponentsMRNA DilutionMicrofluidic InstrumentSyringe PreparationPBS DilutionCitric Acid BufferLipid Stock SolutionsIonizable LipidHelper LipidCholesterolLipid anchored PEG

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved