Summary
Abstract
Protocol
Representative Results
Discussion
References
Immunology and Infection
Malaria is transmitted through inoculation of the sporozoite stage of Plasmodium by infected mosquitoes. Transgenic Plasmodium has allowed us to understand the biology of malaria better and has contributed directly to malaria vaccine development efforts. Here, we describe a streamlined methodology to generate transgenic Plasmodium berghei sporozoites.
Malaria is a deadly disease caused by the parasite Plasmodium and is transmitted through the bite of female Anopheles mosquitoes. The sporozoite stage of Plasmodium deposited by mosquitoes in the skin of vertebrate hosts undergoes a phase of mandatory development in the liver before initiating clinical malaria. We know little about the biology of Plasmodium development in the liver; access to the sporozoite stage and the ability to genetically modify such sporozoites are critical tools for studying the nature of Plasmodium infection and the resulting immune response in the liver. Here, we present a comprehensive protocol for the generation of transgenic Plasmodium berghei sporozoites. We genetically modify blood-stage P. berghei and use this form to infect Anopheles mosquitoes when they take a blood meal. After the transgenic parasites undergo development in the mosquitoes, we isolate the sporozoite stage of the parasite from the mosquito salivary glands for in vivo and in vitro experimentation. We demonstrate the validity of the protocol by generating sporozoites of a novel strain of P. berghei expressing the green fluorescent protein (GFP) subunit 11 (GFP11), and show how it could be used to investigate the biology of liver-stage malaria.
All research involving vertebrate animals in our laboratory was performed in compliance with the University of Georgia animal use guidelines and protocols.
1. Generation of P. berghei -infected mice
Determining the frequency and development of schizonts is critical for assuring that enough viable parasites are in the optimal stage for transfection. Immature schizonts can be differentiated from fully mature schizonts by the presence of fewer merozoites that do not fill the entire intracellular space of the RBC (Figure 1B). It is important to note that when making blood smears from cultured blood, infected RBCs may break open, resulting in the observation of free, extracellular merozoites.......
We have used the above protocol in our laboratory to create several lines of transgenic P. berghei parasites. Though optimized for P. berghei, we have also successfully used this protocol to generate transgenic P. yoelii sporozoites. After injecting the transfected schizonts into mice, parasites are detectable typically no later than 3 d.p.i. in all groups, including the no plasmid control. Selection is started only once parasitemia has been detected to ensure the viability of parasites followi.......
ABOUT JoVE
Copyright © 2023 MyJoVE Corporation. All rights reserved