A subscription to JoVE is required to view this content. Sign in or start your free trial.
In this study, a dot-blot application was designed to detect Leptospira from the three main clades in water samples. This method allows for the identification of minimal DNA quantities specifically targeted by a digoxigenin-labeled probe, easily detected by an anti-digoxigenin antibody. This approach is a valuable and satisfactory tool for screening purposes.
The dot-blot is a simple, fast, sensitive, and versatile technique that enables the identification of minimal quantities of DNA specifically targeted by probe hybridization in the presence of carrier DNA. It is based on the transfer of a known amount of DNA onto an inert solid support, such as a nylon membrane, utilizing the dot-blot apparatus and without electrophoretic separation. Nylon membranes have the advantage of high nucleic acid binding capacity (400 µg/cm2), high strength, and are positively or neutrally charged. The probe used is a highly specific ssDNA fragment of 18 to 20 bases long labeled with digoxigenin (DIG). The probe will conjugate with the Leptospira DNA. Once the probe has hybridized with the target DNA, it is detected by an anti-digoxigenin antibody, allowing its easy detection through its emissions revealed in an X-ray film. The dots with an emission will correspond to the DNA fragments of interest. This method employs the non-isotopic labeling of the probe, which may have a very long half-life. The drawback of this standard immuno-label is a lower sensitivity than isotopic probes. Nevertheless, it is mitigated by coupling polymerase chain reaction (PCR) and dot-blot assays. This approach enables the enrichment of the target sequence and its detection. Additionally, it may be used as a quantitative application when compared against a serial dilution of a well-known standard. A dot-blot application to detect Leptospira from the three main clades in water samples is presented here. This methodology can be applied to large amounts of water once they have been concentrated by centrifugation to provide evidence of the presence of Leptospiral DNA. This is a valuable and satisfactory tool for general screening purposes, and may be used for other non-culturable bacteria that may be present in water, enhancing the comprehension of the ecosystem.
Leptospirosis in humans mainly originates from environmental sources1,2. The presence of Leptospira in lakes, rivers, and streams is an indicator of leptospirosis transmission among wildlife, and domestic and production animals that may eventually come into contact with these bodies of water1,3,4. Furthermore, Leptospira has been identified in non-natural sources, including sewage, stagnant and tap water5,6.
Le....
1. Sample preparation
To assess the effectiveness of the technique, genomic DNA from pure cultures of each Leptospira serovar was used, along with the clade-specific probe. Membranes were prepared with 100 ng of genomic DNA per PCR reaction for each serovar, followed by eight genomic DNA of non-related bacteria and variable concentrations of genomic DNA of the ad hoc Leptospira serovars. Each assay included positive, negative, and non-template control. These non-related genomic DNA did not show an affinity for the dot-blot p.......
The critical steps of the dot-blot technique include (1) DNA immobilization, (2) blocking of the free binding sites on the membrane with non-homologous DNA, (3) the complementarity between the probe and the target fragment under annealing conditions, (4) removal of the unhybridized probe, and (5) the detection of the reporter molecule41.
The PCR-Dot-blot has certain limitations, such as the technique does not provide information about the size of the hybridized fragment.......
The authors declare that there is no conflict of interest.
We are indebted to the Leptospira collection of the Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico. We are grateful for the generous donation of the reference Leptospira strains; Leptospira fainei serovar Hurstbridge strain BUT6 and Leptospira biflexa serovar Patoc strain Patoc I to Dr. Alejandro de la Peña Moctezuma. We thank Dr. José Antonio Ocampo Cervantes, the CIBAC Coordinator, and the personnel for their logistical support. EDT was under the Terminal Project program for undergraduate students of the Metropolitan Autonom....
Name | Company | Catalog Number | Comments |
REAGENTS | |||
Purelink DNA extraction kit | Invitrogen | K182002 | |
Gotaq Flexi DNA Polimerase (End-Point PCR Taq polymerase kit) | Promega | M3001 | |
Whatman filter paper, grade 1, | Merk | WHA1001325 | |
Nylon Membranes, positively charged Roll 30cm x 3 m | Roche | 11417240001 | |
Anti-Digoxigenin-AP, Fab fragments Sheep Polyclonal Primary-antibody | Roche | 11093274910 | |
Medium Base EMJH | Difco | S1368JAA | |
Leptospira Enrichment EMJH | Difco | BD 279510 | |
Blocking Reagent | Roche | 11096176001 | |
CSPD ready to use Disodium 3-(4-methoxyspiro {1,2-dioxetane-3,2′-(5′-chloro) tricyclo [3.3.1.13,7] decan}8-4-yl) phenyl phosphate | Merk | 11755633001 | |
Deoxyribonucleic acid from herring sperm | Sigma Aldrich | D3159 | |
Developer Carestream | Carestream Health Inc | GBX5158621 | |
Digoxigenin-11-ddUTP | Roche | 11363905910 | |
EDTA, Disodium Salt (Dihydrate) | Promega | H5032 | |
Ficoll 400 | Sigma Aldrich | F8016 | |
Fixer Carestream | Carestream Health Inc | GBX 5158605 | |
Lauryl sulfate Sodium Salt (Sodium dodecyl sulfate; SDS) C12H2504SNa | Sigma Aldrich | L5750 | |
N- Lauroylsarcosine sodium salt CH3(CH2)10CON(CH3) CH2COONa | Sigma Aldrich | L-9150 | It is an anionic surfactant |
Polivinylpyrrolidone (PVP-40) | Sigma Aldrich | PVP40 | |
Polyethylene glycol Sorbitan monolaurate (Tween 20) | Sigma Aldrich | 9005-64-5 | |
Sodium Chloride (NaCl) | Sigma Aldrich | 7647-14-5 | |
Sodium dodecyl sulfate (SDS) | Sigma Aldrich | 151-21-3 | |
Sodium hydroxide (NaOH) | Sigma Aldrich | 1310-73-2 | |
Sodium phosphate dibasic (NaH2PO4) | Sigma-Aldrich | 7558-79-4 | |
Terminal transferase, recombinant | Roche | 3289869103 | |
Tris hydrochloride (Tris HCl) | Sigma-Aldrich | 1185-53-1 | |
SSPE 20X | Sigma-Aldrich | S2015-1L | It can be Home-made following Supplementary File 6 |
Primers | Sigma-Aldrich | On demand | Follow table 1 |
Probes | Sigma-Aldrich | On demand | Follow table 1 |
Equipment | |||
Nanodrop™ One Spectrophotometer | Thermo-Scientific | ND-ONE-W | |
Refrigerated microcentrifuge Sigma 1-14K, suitable for centrifugation of 1.5 ml microcentrifuge tubes at 14,000 rpm | Sigma-Aldrich | 1-14K | |
Disinfected adjustable pipettes, range 2-20 µl, 20-200 µl | Gilson | SKU:F167360 | |
Disposable 1.5 ml microcentrifuge tubes (autoclaved) | Axygen | MCT-150-SP | |
Disposable 600 µl microcentrifuge tubes (autoclaved) | Axygen | 3208 | |
Disposable Pipette tips 1-10 µl | Axygen | T-300 | |
Disposable Pipette tips 1-200 µl | Axygen | TR-222-Y | |
Dot-Blot apparatus Bio-Dot | BIORAD | 1706545 | |
Portable Hergom Suction | Hergom | 7E-A | |
Scientific Light Box (Visible-light PH90-115V) | Hoefer | PH90-115V | |
UV Crosslinker | Hoefer | UVC-500 | |
Thermo Hybaid PCR Express Thermocycler | Hybaid | HBPX110 | |
Radiographic cassette with IP Plate14 X 17 | Fuji |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved