Abstract
Developmental Biology
* These authors contributed equally
Signaling pathways orchestrate fundamental biological processes, including development, regeneration, homeostasis, and disease. Methods to experimentally manipulate signaling are required to understand how signaling is interpreted in these wide-ranging contexts. Molecular optogenetic tools can provide reversible, tunable manipulations of signaling pathway activity with a high degree of spatiotemporal control and have been applied in vitro, ex vivo, and in vivo. These tools couple light-responsive protein domains, such as the blue light homodimerizing light-oxygen-voltage sensing (LOV) domain, with signaling effectors to confer light-dependent experimental control over signaling. This protocol provides practical guidelines for using the LOV-based bone morphogenetic protein (BMP) and Nodal signaling activators bOpto-BMP and bOpto-Nodal in the optically accessible early zebrafish embryo. It describes two control experiments: A quick phenotype assay to determine appropriate experimental conditions, and an immunofluorescence assay to directly assess signaling. Together, these control experiments can help establish a pipeline for using optogenetic tools in early zebrafish embryos. These strategies provide a powerful platform to investigate the roles of signaling in development, health, and physiology.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved