Sign In

In This Article

  • Abstract
  • Reprints and Permissions

Abstract

Bipolar cells and horizontal cells of the vertebrate retina are the first neurons to process visual information after photons are detected by photoreceptors. They perform fundamental operations such as light adaptation, contrast sensitivity, and spatial and color opponency. A complete understanding of the precise circuitry and biochemical mechanisms that govern their behavior will advance visual neuroscience research and ophthalmological medicine. However, current preparations for examining bipolar and horizontal cells (retinal whole mounts and vertical slices) are limited in their capacity to capture the anatomy and physiology of these cells. In this work, we present a method for removing photoreceptor cell bodies from live, flatmount mouse retinas, providing enhanced access to bipolar and horizontal cells for efficient patch clamping and rapid immunolabeling. Split retinas are prepared by sandwiching an isolated mouse retina between two pieces of nitrocellulose, then gently peeling them apart. The separation splits the retina just above the outer plexiform layer to yield two pieces of nitrocellulose, one containing the photoreceptor cell bodies and another containing the remaining inner retina. Unlike vertical retina slices, the split retina preparation does not sever the dendritic processes of inner retinal neurons, allowing for recordings from bipolar and horizontal cells that integrate the contributions of gap junction-coupled networks and wide-field amacrine cells. This work demonstrates the versatility of this preparation for the study of horizontal and bipolar cells in electrophysiology, immunohistochemistry, and in situ hybridization experiments.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Inner Nuclear Layer NeuronsVertebrate RetinaVisual ProcessingBipolar CellsHorizontal CellsPatch Clamp ElectrophysiologyImmunolabelingChannelrhodopsin

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved