Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol demonstrates the chaperone activity of heat shock protein 70 (Hsp70). E. coli dnaK756 cells serve as a model for the assay as they harbor a native, functionally impaired Hsp70, making them susceptible to heat stress. The heterologous introduction of functional Hsp70 rescues the growth deficiency of the cells.

Abstract

Heat shock protein 70 (Hsp70) is a conserved protein that facilitates the folding of other proteins within the cell, making it a molecular chaperone. While Hsp70 is not essential for E. coli cells growing under normal conditions, this chaperone becomes indispensable for growth at elevated temperatures. Since Hsp70 is highly conserved, one way to study the chaperone function of Hsp70 genes from various species is to heterologously express them in E. coli strains that are either deficient in Hsp70 or express a native Hsp70 that is functionally compromised. E. coli dnaK756 cells are unable to support λ bacteriophage DNA. Furthermore, their native Hsp70 (DnaK) exhibits elevated ATPase activity while demonstrating reduced affinity for GrpE (Hsp70 nucleotide exchange factor). As a result, E. coli dnaK756 cells grow adequately at temperatures ranging from 30 °C to 37 °C, but they die at elevated temperatures (>40 °C). For this reason, these cells serve as a model for studying the chaperone activity of Hsp70. Here, we describe a detailed protocol for the application of these cells to conduct a complementation assay, enabling the study of the in cellulo chaperone function of Hsp70.

Introduction

Heat shock proteins play an important role as molecular chaperones by facilitating protein folding, preventing protein aggregation, and reversing protein misfolding1,2. Heat shock protein 70 (Hsp70) is one of the most prominent molecular chaperones, playing a central role in protein homeostasis3,4. DnaK is the E. coli Hsp70 homologue5.

Various biophysical, biochemical, and cell-based assays have been developed to explore the chaperone activity of Hsp70 and to screen for inhibitors targeting t....

Protocol

1. Transformation

NOTE: Use sterile glassware for culture, pipette tips, and freshly prepared and autoclaved media. Prepare cultures of the E. coli cells in 2x yeast tryptone (YT) [1.6% tryptone (w/v), 1% yeast extract (w/v), 0.5% NaCl (w/v), 1.5% agar (w/v)] agar. General reagents used in the protocol and their sources are provided in the Table of Materials.

  1. Label 2.0 mL microcentrifuge tubes and aliquot 50 µL of competent E. col.......

Representative Results

Figure 2 presents an image of the scanned agar containing cells that were spotted and cultured at the permissive growth temperature of 37 °C and 43.5 °C, respectively. On the right-hand side of Figure 2, excised western blot components represent the expression of DnaK, KPf, and KPf-V436F in E. coli dnaK756 cells. As expected, all the E. coli dnaK756 cells cultured at the permissive growth temperature of 37 °C manag.......

Discussion

The protocol demonstrates the utility of E. coli dnaK756cells in exploring the chaperone function of heterologously expressed Hsp70. This assay could be adopted to screen inhibitors targeting Hsp70 function in cellulo. However, one limitation of this method is that Hsp70s unable to substitute for DnaK in E. coli are not compatible with this assay. Lack of post-translational modification21 of some non-native Hsp70s may account for their lack of function within the

Acknowledgements

The work was supported with grant funding obtained from the International Centre for Genetic Engineering and Biotechnology (ICGEB) grant number, HDI/CRP/012, Research Directorate of the University of Venda, grant I595, Department of Science and Innovation (DSI) and the National Research Foundation (NRF) of South Africa (grant numbers, 75464 & 92598) awarded to AS.

....

Materials

NameCompanyCatalog NumberComments
2-β-MercaptoethanolSigma-Aldrich8,05,740Constituent for sample loading dye
Acetic acidLabchem101005125Constituent of destainer
AcrylamideSigma-Aldrich8008300100Component of SDS
AgarMerckHG000BX1.500Constituent of medium and liquid growth assay
AgaroseClever Scientific14131031Certified molecular biology agarose
Ammonium persulfateSigma-Aldrich101875295Constituent for SDS-PAGE gel
AmpicillinVWR International0339—EU—25GSelective antibiotic
BisSigma-aldrich1015460100Component of SDS
BromophenolSigma-Aldrich0449-25GConstituent for sample loading dye
CaCl2Sigma-Aldrich10043-52-4For competent cells preparation
Coomassie brilliant blueVWR International443293XSDS-PAGE dye
Dibasic sodium phosphateSigma-AldrichRB10368Constituent of PBS buffer
ECLThermofischer Scientific32109Western blot detection reagent
Ethidium BromideThermofischer Scientific17898DNA intercalating dye
GlycerolMerckSAAR2676520LConstituent for sample loading dye
GlycineVWR International10119CUComponent of SDS
IPTGGlentham life sciences162ILinducer
KanamycinMelfordK0126Selective antibiotic
Magnesium ChlorideMerckSAAR4123000EMConstituent of medium and liquid growth assay
MethanolLabchem113140129Constituent of destainer
Monobasic potassium phosphateMerck1,04,87,30,250Constituent of PBS buffer
PeptoneMerckHG000BX4.250Constituent of medium and liquid growth assay
Potassium chlorideMerckSAAR5042020EMConstituent of PBS buffer
PVDF membraneThermofischer scientificPB7320Western blot membrane
Sodium ChlorideMerckSAAR5822320EMConstituent of medium and liquid growth assay
Sodium dodecyl sulphateVWR International108073To resolve expressed proteins
Spectramax iD3Separations373705019Automated plate reader
TEMEDVWR internationalACRO420580500Component of SDS gel
TetracyclineDuchefa BiochemiesT0150.0025Selective antibiotic
TrisVWR International19A094101Component of SDS gel
Tween20MerckSAAR3164500XFConstituent for Western wash buffer
Western transfer chamberThermofisher ScientificPB0112Transfer of protein to nitrocellulose membrane
Yeast extractMerckHG000BX6.500Constituent of medium and liquid growth assay
α-DnaK antibodyInqabaBK CAC09317Primary antibody
α-rabbit antibodyThermofischer scientific31460Secondary antibody

References

  1. Bukau, B., Deuerling, E., Pfund, C., Craig, E. A. Getting newly synthesized proteins into shape. Cell. 101 (2), 119-122 (2000).
  2. Shonhai, A. Plasmodial heat shock proteins: targets for chemotherapy. FEMS Microbiol. I....

Explore More Articles

Escherichia ColiComplementation AssayHeat Shock Protein 70Chaperone FunctionMalariaTuberculosisDrug ResistanceProtein FoldingMolecular ChaperoneDnaK756GrpEATPase Activity

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved