A subscription to JoVE is required to view this content. Sign in or start your free trial.
Autism Spectrum Disorder (ASD) is associated with impaired social and communicative behavior and the emergence of repetitive behavior. For studying the interrelation between ASD genes and behavioral deficits in the Drosophila model, five behavioral paradigms are described in this paper for assaying social spacing, aggression, courtship, grooming, and habituation behavior.
Autism Spectrum Disorder (ASD) encompasses a heterogeneous group of neurodevelopmental disorders with common behavioral symptoms including deficits in social interaction and ability for communication, enhanced restricted or repetitive behaviors, and also, in some cases, learning disability and motor deficit. Drosophila has served as an unparalleled model organism for modeling a great number of human diseases. As many genes have been implicated in ASD, fruit flies have emerged as a powerful and efficient way to test the genes putatively involved with the disorder. As hundreds of genes, with varied functional roles, are implicated in ASD, a single genetic fly model of ASD is unfeasible; instead, individual genetic mutants, gene knockdowns, or overexpression-based studies of the fly homologs of ASD-associated genes are the common means for gaining insight regarding molecular pathways underlying these gene products. A host of behavioral techniques are available in Drosophila which provide easy readout of deficits in specific behavioral components. Social space assay and aggression and courtship assays in flies have been shown to be useful in assessing defects in social interaction or communication. Grooming behavior in flies is an excellent readout of repetitive behavior. Habituation assay is used in flies to estimate the ability for habituation learning, which is found to be affected in some ASD patients. A combination of these behavioral paradigms can be utilized to make a thorough assessment of the human ASD-like disease state in flies. Using Fmr1 mutant flies, recapitulating Fragile-X syndrome in humans, and POGZ-homolog row knockdown in fly neurons, we have shown quantifiable deficits in social spacing, aggression, courtship behavior, grooming behavior, and habituation. These behavioral paradigms are demonstrated here in their simplest and straightforward forms with an assumption that it would facilitate their widespread use for research on ASD and other neurodevelopmental disorders in fly models.
Autism Spectrum Disorder (ASD) encompasses a heterogeneous group of neurological disorders. It includes a range of complex neuro-developmental disorders characterized by multi-contextual and persistent deficits in social communication and social interaction and the presence of restricted, repetitive behavioral and activity patterns and interests1. According to World Health Organization (WHO), 1 in 100 children is diagnosed with ASD worldwide with a male-to-female ratio of 4.22. The disease becomes evident in the second or third year of life. ASD children show a lack of interest in social-emotional reciprocity, non-verbal....
See the Table of Materials for details related to all materials and reagents used in this protocol.
1. Aggression assay
Aggression assay
As a fly ASD model, Fmr1 mutant flies have been used63,64. w1118 males were used as control and Fmr1 trans-heterozygote Fmr1Δ113M/Fmr1Δ50M57 male flies as experimental flies; adult males were housed in isolation tubes for 5 days. Homotypic males (same genotype, same housing conditions) were introduced in the aggression arena and their behavior .......
Drosophila is used as a fine model organism for research in human neurological disorders due to a high degree of conservation of gene sequences between fly and human disease genes9. Numerous robust behavioral paradigms make it an attractive model for studying phenotypes manifested in mutants recapitulating human diseases. As hundreds of genes are implicated in autism spectrum disorder (ASD), no common ASD model exists in any model organism. Hence, for each mutant, researchers must first e.......
We are immensely thankful to Mani Ramaswami (NCBS, Bangalore) and Baskar Bakthavachalu (IIT Mandi) for the habituation and odor choice assay setup, Pavan Agrawal (MAHE) for his valuable suggestions on the aggression assay, Amitava Majumdar (NCCS, Pune) for sharing his courtship assay chamber prototype and Fmr1 mutant fly lines, and Gaurav Das (NCCS, Pune) for sharing the MB247-GAL4 line. We thank Bloomington Drosophila Stock Center (BDSC, Indiana, USA), National Institute of Genetics (NIG, Kyoto, Japan), Banaras Hindu University (BHU, Varanasi, India), and National Center for Biological Science (NCBS, Bangalore, India) for Drosophila lines. ....
Name | Company | Catalog Number | Comments |
Aggression arena: | |||
Standard 24-well plate made of transparent polystyrene | 12 cm x 8 cm x 2 cm. Diameter of a single well= 18 cm. Sigma-aldrich #Z707791; depth = 1 cm | ||
Transparent plastic/acrylic sheet | Alternative: a perforated lid of a cell culture plate | ||
Social Space Assay: | |||
Binder clips | 19 mm | ||
Glass sheets and acrylic sheets of customized sizes | Thickness = 5 mm | ||
Courtship assay: | |||
Nut and bolt with threading | |||
Perspex sheets of customized shapes | i) Lid: A custom-made round transparent Perspex disk (2-3 mm thickness, 70 mm diameter) with one loading hole at the peripheral region and another screw hole at the center (diameter ~ 3 mm for each); ii) A second transparent thicker Perspex disk (3-4 mm thickness, 70 mm diameter), with 6-8 perforations of diameter 15 mm, equidistant from the center; iii) Base: Same as lid except without the loading hole | ||
Grooming assay: | |||
Diffused glass-covered LED panel | 10–15-Watt ceiling mountable LED panel | ||
Habituation and Y-maze assay | |||
Climbing chambers | x2, Borosilicate glass | ||
Adapter for connecting Y-maze with entry vial | Perspex, custom made, measurements in Figure 5A | ||
Clear reagent bottles | Borosil #1500017 | ||
Gas washing stopper | Borosil #1761021 | ||
Glass vial | OD= 25 mm x Height= 85 mm; Borosilicate Glass | ||
Odorant (Ethyl Butyrate) | Merck #E15701 | ||
Paraffin wax (liquid) light | SRL #18211 | ||
Roller clamps | Polymed #14098 | ||
Silicone tubes | OD = 0.6 cm, ID = 0.3 cm; roller clamps for flow control | ||
Vacuum pump | Hana #HN-648 (Any aquarium pump with flow direction reversed manually) | ||
Y-maze | Borosilicate glass | ||
Y-shaped glass tube (borosilicate glass) | Custom made, measurements in Figure 5A | ||
Common items: | |||
Any software for video playback (eg.- VLC media player) | https://www.videolan.org/vlc/ | ||
Computer for video data analysis | |||
Fly bottles | OD= 60 mm x Height= 140 mm; glass/polypropylene | ||
Fly vials | OD= 25 mm x Height= 85 mm; Borosilicate Glass | ||
Graph-pad Prism software | https://www.graphpad.com/scientific-software/prism/www.graphpad.com/scientific-software/prism/ | ||
ImageJ software | https://imagej.net/downloads | ||
Timer | |||
Video camera with video recording set up | Camcorder or a mobile phone camera will work | ||
For Fly Aspirator: | |||
Cotton | Absorbent, autoclaved | ||
Parafilm | Sigma-aldrich #P7793 | ||
Pipette tips | 200 µL or 1000 µL, choose depeding on outer diameter of the silicone tube | ||
Silicone/rubber tube | length= 30-50 cm. The tube should be odorless | ||
Composition of Fly food: | |||
Ingredients (amount for 1 L of food) | |||
Agar (8 g) | SRL # 19661 (CAS : 9002-18-0) | ||
Cornflour (80 g) | Organic, locally procured | ||
D-Glucose (20 g) | SRL # 51758 (CAS: 50-99-7) | ||
Propionic acid (4 g) | SRL # 43883 (CAS: 79-09-4) | ||
Sucrose (40 g) | SRL # 90701 (CAS: 57-50-1) | ||
Tego (Methyl para hydroxy benzoate) (1.25 g) | SRL # 60905 (CAS: 5026-62-0) | ||
Yeast Powder (10 g) | HIMEDIA # RM027 | ||
Fly lines used in the experiments in this study: | |||
Wild type (Canton S or CS) | BDSC # 64349 | ||
w1118 | BDSC # 3605 | ||
w[1118]; Fmr1[Δ50M]/TM6B, Tb[+] | BDSC # 6930 | ||
w[*]; Fmr1[Δ113M]/TM6B, Tb[1] | BDSC # 67403 | ||
MB247-GAL4 (Gaurav Das, NCCS Pune, India) | BDSC # 50742 | ||
LN1-GAL4 | NP1227, NP consortium, Japan | ||
row-shRNA | BDSC # 25971 |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved