Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a protocol to generate a human brain organoid with resident microglia by incorporating Induced pluripotent stem cell (iPSC)-derived hematopoietic progenitor cells (HPCs) into organoid development.

Abstract

Three-dimensional (3D) brain organoid cultures derived from induced pluripotent stem cells (iPSC) provide an important alternative in vitro tool for studying human brain development and pathogenesis of neurological diseases. However, the lack of incorporation of microglia in the human brain organoids is still a major hurdle for 3D models of neuroinflammation. Current approaches include either the incorporation of fully differentiated microglia into mature brain organoids or the induction of microglial differentiation from the early stage of iPSC-derived embryoid bodies (EBs). The first approach misses the stage when microglial differentiation interacts with the adjacent neural environment, and the later approach is technically challenging, resulting in inconsistency among the final organoids in terms of the quantity and quality of microglia. To model brain organoids with microglia to study the early interactions between microglial and neuronal development, highly pure hematopoietic progenitor cells (HPC) differentiated from human iPSCs were incorporated into iPSC-derived EBs to make brain organoids. Using immunostaining and single-cell RNA sequencing (sc-RNA-seq) analysis, we confirmed that HPCs were incorporated into the 3D organoids, which eventually developed into brain organoids with both microglia and neurons. Compared to brain organoids without HPCs, this approach produces significant microglial incorporation in the brain organoids. This novel 3D organoid model, which consists of both microglial and neural development properties, can be used to study the early interactions between innate immune and nervous system development and potentially as a model for neuroinflammation and neuroinfectious disorders.

Introduction

Microglia are residential immune cells in the brain, playing critical roles in both brain development and homeostasis1,2. The activation of microglia results in the production of proinflammatory factors, elevated phagocytosis, and reactive oxidative stress, which removes the invading pathogens and compromised cells. However, overactivation or prolonged activation of microglia may, on the other hand, cause neurodegeneration as a mechanism of pathogenesis in many neurological disorders, including Parkinson's disease3,4. It is important that microglia....

Protocol

The original blood samples from healthy adult donors were collected at the Transfusion Medicine Blood Bank of the NIH, and signed informed consent forms were obtained in accordance with the NIH Institutional Review Board.

1. Producing hematopoietic progenitor cells (HPCs) from human iPSCs

NOTE: Human iPSC cells 510 and 507 were used to produce the representative results. The methods of generation and maintenance of the iPSCs can be found in a previous.......

Representative Results

Our protocol follows a scheme to differentiate HPCs from iPSCs and then mix the HPCs with iPSCs to make EBs, followed by neural induction, differentiation, and maturation (Figure 1). High quality of HPC differentiation is critical for the success of EB formation and later organoid differentiation. A serial dilution culture technique is used to produce the appropriate numbers and size of iPSC colonies to start the HPC differentiation (Figu.......

Discussion

Here, a detailed protocol for making 3D neural organoids containing innate microglia from EBs derived from mixed iPSCs and iPSC-differentiated HPCs is presented. It is a relatively short and easy approach involving only cell culture techniques and equipment generally available in most laboratories.

The most critical factor for the success of this protocol is the quality of HPC differentiation. We adopted the published method17 using a commercial kit to differentiate HPC.......

Acknowledgements

This study is supported by NINDS intramural research funds.

....

Materials

NameCompanyCatalog NumberComments
12 well cell culture platesCorning #3512
24 well cell culture plateSARSTEDT#83.3922
AccutaseThermoA1110501
Aggrewell 400 plateStemcell technologies#34411Referred to as microwell culture plate 
Alexa Fluor 488 goat anti-mouse antibodyLife techniologiesA110011:400 dilution
Alexa Fluor 594 goat anti-rabbit antibodyLife techniologiesA110121:400 dilution
Allegra X-30R Centrifuge with rotor S6069Beckman Couler
Anti- Adherence  Rinsing solutionStem Cell Technologies#07010
anti-CD34 antibodyStem Cell Technologies#600131:100 dilution
anti-Human CD43 antibodyStem Cell Technologies#600851:100 dilution
anti-IBA1 rabbbit antibodyFujifilm019-197412.5 µg/mL
anti-TREM2  rat pAbRD Systemsmab172912.5 µg/mL
Antibiotic-antimycoticGibco15240-0621x
B27 supplementLife technologies17504-0441x
bFGFPeprotech100-18B20 ng/mL
CD200NovoproteinC311 100 ng/mL
CryoTube vialsThermo#368632
CX3CL1Peprotech300-31 100 ng/mL
DAPISigmaD95421 µg/mL
DMEM/F12Life technologies12400-0241x
DMSOSigmaD2650
DPBSGibco#41901361x
E8 Flex medium kitThermoA2858501
EDTAMediatech46-034-Cl 0.5 mM
EGFPeprotechAF-100-1520 ng/mL
EVOS FL Auto MicroscopeThermoFluorescence microscope 
FastStart Universal SYBR Green PCR master mixRoche#4913850001
GlutamaxGibco#35050079
Goat serumSigmaG90234%
IL-34Peprotech200-34 100 ng/mL
ImageXpress Micro ConfocalMolecular Devices
Knockout DMEM/F12Gibco#10829018
M-CSFPeprotech300-25 25 ng/mL
MatrigelCorning#354277Basement membrane matrix (BMM)
Mouse anti-βIII-tubulin antibodyPromegaG712A1:1000 dilution
Mr. Frosty containerThermo5100-0001
N2 supplementLife technologies17502-0481x
ParaformadehydeSigmaP61484%
PSC Neural Induction MediumGibcoA1647801
Rock inhibitor Y27632Stemcell technologies#723041 mM stock
RT LTS 1000 ul pipette tipsRAININ#30389218 for transferring organoids
STEMdiff Cerebral Organoid KitStem Cell Technologies#08570
STEMdiff Hematopoietic KitStemCell Technologies#5310Referred to as hematopoietic Kit
StemPro Neural SupplementGibcoA1050801Referred to as neural supplement
TGF-β1Peprotech100-2150 ng/mL
Total RNA Purification Plus KitNorgen#48400
TritonX-100SigmaT92840.10%
Visikol Histo-Starter KitVisikolHSK-1Contains organoid clearing solution HISTO-M, washing buffer
Zeiss LSM 510-META Confocal MicroscopeZeiss

References

  1. Sabate-Soler, S., et al. Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia. 70 (7), 1267-1288 (2022).
  2. Lazarov, T., Juarez-Carreño, S., Cox, N., Geissmann, F.

Explore More Articles

Developmental Biology

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved