Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.
Method Article
Fide sel testi Pseudomonas syringae bakteridirenç için yabani domates katılımları hızlı tarama kolaylaştırır. Bu tetki, fide bakteri büyüme testi ile birlikte kullanılan, daha fazla bakteriye altta yatan direnç karakterize yardımcı olabilir, ve direnç genetik temelini belirlemek için popülasyonları tarama için kullanılabilir.
Domates Pseudomonas syringaetarafından enfekte edilebilir bir tarımsal olarak önemli bir üründür , Bir Gram-negatif bakteri, bakteriyel benek hastalığı ile sonuçlanan. Domates-P. syringae pv. domates patosistemi yaygın bitki doğuştan gelen tepkiler ve hastalık direnci genetik temelini incelemek için kullanılır. Hastalık, Solanum pimpinellifolium'dan Ekili domatese Pto/Prf gen kümesinin getirilmesiyle uzun yıllar boyunca başarılı bir şekilde yönetilirken, P. syringae'nin 1.
Yabani domates türleri patojen tanımada doğal çeşitliliğin önemli rezervuarlarıdır, çünkü farklı patojen basınçları ile farklı ortamlarda evrimleşmişlerdir. Yabani domates hastalık direnci için tipik ekranlarda, yetişkin bitkiler, onların uzun büyüme süresi ve daha fazla büyüme alanı gereksinimleri nedeniyle taranabilir bitki sayısını sınırlayabilir kullanılır. 10 günlük domates fidelerini direnç açısından taramak için bir yöntem geliştirdik, bu yöntem bitki büyüme süresini ve büyüme odası alanını en aza indirir, bitkilerin hızlı bir şekilde devrilmesini sağlar ve büyük numune boyutlarının test edilmesine olanak sağlar. Hayatta kalma veya ölüm fide sonuçları ayrık fenotipler olarak veya sel sonrası kalan fidelerde yeni büyüme miktarı ile tanımlanan bir direnç ölçeğinde tedavi edilebilir. Bu yöntem, 10 günlük domates fidelerini iki P. syringae suşlarına karşı direnç açısından taramak için optimize edilmiştir ve diğer P. syringae suşlarına kolayca adapte edilebilir.
Pseudomonas syringae, çok çeşitli bitki konaklarını enfekte eden gram-negatif patojenik bir bakteridir. Bakteriler stomata veya fiziksel yaralar yoluyla konak bitki girin ve apoplast1çoğalır. Bitkiler bakteriyel patojenler tarafından enfeksiyona karşı korumak için iki katmanlı bir bağışıklık yanıtı gelişti. Birinci seviye bitki hücre yüzeyinde oluşur, burada bitki hücre zarında desen tanıma reseptörleri son derece korunmuş patojen ilişkili moleküler desenler algılar (PAMPs) PAMP tetikli bağışıklık denilen bir süreç (PTI)2. Bu işlem sırasında, konak bitki hücre duvarına kalkoz birikimi, stomata kapatılması, reaktif oksijen türlerinin üretimi ve patogenez ile ilgili genlerin indüksiyon dahil olmak üzere savunma tepki yollarını düzenler.
Bakteriler, proteinler olarak adlandırılan proteinleri doğrudan bitki hücresi3'eulaştırmak için tip III salgı sistemini kullanarak PTI'nin üstesinden gelebilirler. Efektör proteinler genellikle PTI bileşenleri hedef ve patojen virülans teşvik4. Bitki bağışıklığının ikinci kademesi, etki alanı proteinlerin tanınması üzerine bitki hücresi içinde oluşur. Bu tanıma direnç genleri bağlıdır, hangi nükleotit bağlayıcı site lösin açısından zengin tekrar içeren reseptörleri (NLR). NLR'ler ya doğrudan efektörleri tanıyabilme ya da bir virülans hedefi ndeki aktivitelerini tanıma ya da5. Daha sonra etkili tetikli bağışıklık denilen bir süreçte ikincil bir bağışıklık yanıtı tetikler (ETI), genellikle aşırı duyarlı bir yanıt ile ilişkili (İK), enfeksiyon yerinde lokalize hücre ölümü bir formu6. ETI ile ilişkili gen-gen direncinin aksine, bitkiler birden fazla genin katkısına bağlı olan kantitatif kısmi dirençgösterebilirler 7.
P. syringae pv. domates (Pst)domates bakteriyel benek nedensel ajan dır ve kalıcı bir tarımsorunudur. Alanında baskın suşları genellikle Pst yarış 0 suşları ya da tip III efektörleri AvrPto ve AvrPtoB her ikisini ifade edilmiştir. DC3000(PstDC3000) temsili bir ırk 0 suşu ve domates bakteriyel leke neden olabilir bir model patojen. Bakteriyel benek hastalığı ile mücadele etmek için, yetiştiriciler Pto introgressed [P. syringae pv. domates]/ Prf [Pto direnci ve fenthion duyarlılık] yabani domates türlerinden gen kümesi Solanum pimpinellifolium içine modern çeşitleri8,9. Pto geni, Prf NLR ile birlikte AvrPto ve AvrPtoB10,11,12,13,14efektörleri tanınması yoluyla PstDC3000 direnç vermek bir serin-threonine protein kimyaz kodlar . Ancak, bu direnç son yıllarda onların hızlı ve agresif yayılması için izin, ortaya çıkan Yarış 1 suşları karşıetkisizdir15,16. AvrPto ya kayıp ya da bu suşları mutasyona uğramış çünkü Yarış 1 suşları, Pto / Prf küme tarafından tanıma kaçınmak, ve AvrPtoB minimal15birikir görünür,17,18.
Yabani domates popülasyonları Pst direnci için doğal varyasyon önemli rezervuarları ve daha önce potansiyel direnç loci belirlemek için kullanılmıştır19,20,21. Ancak, patojen direnci için mevcut ekranlar 4-5 haftalık yetişkin bitkiler20,21kullanır. Bu nedenle, büyüme süresi, büyüme odası alanı ve nispeten küçük örneklem boyutları ile sınırlıdır. Konvansiyonel yaklaşımların sınırlamalarını gidermek için, 10 günlük domates fideleri22kullanarak yüksek iş itimat lı domates P. syringae direnç tayini geliştirdik. Bu yaklaşım yetişkin bitkileri kullanma üzerinde çeşitli avantajlar sunar: yani, daha kısa büyüme süresi, azaltılmış alan gereksinimleri, ve daha yüksek iş artışı. Ayrıca, bu yaklaşımın erişkin bitkilerde gözlenen hastalık direnci fenotipleri sadakatle recapitulates göstermiştir22.
Bu protokolde açıklanan fide sel idamı, steril Murashige ve Skoog (MS) medyasının Petri kaplarında 10 gün boyunca yetiştirilir ve daha sonra ilgi ve yüzey aktif bakterisini içeren bir inokülle dolup taşmaktadır. Sel inden sonra, fideler bakteriyel büyüme tahlilleri ile hastalık direnci açısından nicel olarak değerlendirilebilir. Ayrıca, fide sağkalım veya ölüm sel sonra ayrı bir direnç veya hastalık fenotip 7-14 gün olarak hareket edebilir. Bu yaklaşım, Pst ırkı na karşı direnç için çok sayıda yabani domates katılımlarını tatmak için yüksek iş yapma alternatifi sunar, örneğin Pst suşu T1(PstT1) gibi, ve diğer bakteriyel suşlara kolayca adapte edilebilir.
1. Biyogüvenlik kabininin hazırlanması ve kullanımı
2. Bitki ortamının hazırlanması
3. Bitki malzemelerinin hazırlanması ve büyüme koşulları
Şekil 1: Tipik 10 günlük domates fidelerinin gelişim evresi. Rio Grande-PtoR domates tohumları sterilize edildi, kaplandı ve 4 °C'de karanlıkta en az 3 gün boyunca tabakalaştırıldı. Fideler, 0.5x MS plakalar üzerinde 22 °C'de 10 gün boyunca su altında kalmadan önce yetiştirildi. Tipik olarak, 10 gün cotyledons tamamen genişletilmiş ve ilk gerçek yaprakları ortaya çıkmaya başlıyor. Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.
4. King's B23 (KB) ortamının hazırlanması
5. Bakteriyel suşların ve kültür koşullarının bakımı
6. PstT1 inokülünün hazırlanması
7. PstDC3000 inoculum hazırlanması
8. Domates fidesi sel yöntemi
9. Bakteriyel büyüme tsay için cotyledons yüzey sterilizasyonu
10. Bakteriyel büyüme tetkik
Şekil 2: Fide bakteri büyüme tahlilleri için seri seyreltmeler. (A) Enfekte bitkilerden elde edilen yaprak dokusu koloni sayımından önce seyreltilir. Seyreltmeler 96 kuyu plakası (100 seyreltilmemiş) yapılır. Tipik olarak seyreltmeler 10-1'den 10-5'ekadar yapılır. (B) Bakteri kolonisi için kaplama seyreltmeleri sayar. Seyreltme serisinin her bir sütununun toplam 5 μL'si, en seyreltikten en yoğun konsantreye kadar kaplanır. Koloniler tamamen kuruduktan sonra plaka 28 °C'de 36-48 h. Koloniler 10x diseksiyon mikroskobu altında sayılmaktadır. Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.
Genotip1 Sütun A | Doku Ağırlığı (g) Sütun B | # Bir noktada Koloniler Sütun C | Spot2 Sütun D için seyreltme faktörü | Kolonilerin Düzeltilmiş #3 Sütun E | Seri seyreltme Sütunu F için seyreltme faktörü | Kolonilerin Toplam # Sütun G (cfu/0.01 g)4 | Kolonilerin Ortalama # (cfu/0.01 g) Sütun H | Ortalama Günlük Büyümesi (cfu/0.01 g (günlük10)) Sütun I |
Örnek 1 | 0,004 g | 10 | 200 | olarak hesaplanır: (C2 x 0.01 g) / B2 = 25 | 1000 | olarak hesaplanır: (D2 x E2 x F2) = 5000000 | örnek lem 1 ile son numune ortalaması: (yani ortalama G1:G3) = 7000000 | ortalama yani günlük. log(H2) = 6,85 |
Örnek 2 | 0,003 g | 15 | 200 | 50 | 1000 | 10000000 | ||
Örnek 3 | 0,002 g | 6 | 200 | 30 | 1000 | 6000000 | ||
1.1.2 3 örnek için gösterilen veriler | ||||||||
2.000 1 mL için kaplama 5 μL x 200'e dayalı | ||||||||
3.2.2 Cotyledons çekirdek için çok küçük bu yüzden koloni sayıları birMoneyMaker-PtoS cotyledon ortalama kütlesine göre doku 0.01 g normalleştirilmiş (veri gösterilmez) | ||||||||
4.2.2 Kaplamalı hacime göre mL başına ayarlanır |
Tablo 1: Fide bakteri büyüme tetkik için örnek hesaplamalar. Örnek hesaplamalar bakteri sayılarını nasıl normalleştireceklerini ve günlük bakteri büyümesini nasıl belirleyeceklerini gösterir.
11. Direnç için fenotipleme
Şekil 3: Domates fidesinin şematik gösterimi. Bir domates fidesi farklı parçaları, hipokotil, cotyledons, epikoyl, apikal meristem ateş ve gerçek yaprakları da dahil olmak üzere tasvir edilmiştir. Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.
Şekil 4: Çeşitli genetik arka planlarda fide direnci ve ölüm için beklenen fenotiplerin şematik gösterimi. (A) RioGrande-PtoR fideleri ve yakın-isojenik çeşitleri RioGrande-PtoS PstDC3000 (OD600 = 0.005) + 0.015% sürfaktan ile sel 7 gün sonra görüntülenir. RioGrande-PtoR tutarlı direnç gösterir ve RioGrande-PtoS PstDC3000 ile enfeksiyona karşı tutarlı bir duyarlılık gösterir. Bu çizgiler ayrık ve ikili fenotiplere yol açar. (B) Solanum neorickii LA1329 gibi vahşi bir katılımın fideleri, PstT1 (OD600 = 0,0075) + %0,015 yüzey aktif madde ile su bastıktan 10 gün sonra gösterilir. Fideler fenotipik değişkenlik gösterirler ancak ikili fenotipler olarak kaydedilirler. Fenotipik değişkenlik miktarı ve fenotileme yöntemi (ikili direnç veya direnç spektrumu) test edilen katılıma bağlıdır. (C) Duyarlı çeşitlerin yabani katılımları geçerek oluşturulan haritalama popülasyonları F2 ayrıyaşayan popülasyonlarda daha geniş bir fenotip spektrumu gösterebilir. Bu durumda, bir spektrumüzerinde fide fenotipleri kaydetmek için en uygun olabilir. Bir haritalama popülasyonundan son derece duyarlı fideler PstT1 ile sular altında gün 7 gibi erken ölüm için fenotip olabilir, ve genellikle kahverengi apikal meristem göstermek, epiotil çok az uzantısı hayır, ve yeni, yeşil bitkisel büyüme. Duyarlı fidelerin apikal meristem daha fazla süre yeşil veya çok açık kahverengi kalabilir, ve epiotyl ve çok az bitkisel büyüme bazı uzantısı olabilir, hangi kahverengi döner ve tutuklamalar gün 10. Bireysel fideler, 14. Fideler daha sonra, yukarıda açıklanan fenotiplere göre zayıf, orta veya güçlü direnç gibi farklı direnç kategorilerine göre gruplandırılabilir. Bu rakamın daha büyük bir sürümünü görüntülemek için lütfen buraya tıklayın.
Fide direnci tayini kullanılarak çeşitlerive isojenik hatlarda PtoRaracılı bağışıklığın saptanması
Şekil 5, PstDC3000 ile sel bastıktan 7-10 gün sonra Moneymaker-PtoR ve Moneymaker-PtoS çeşitleri için temsili sonuçlar gösterir. Enfeksiyondan önce, 10 günlük fideler tam olarak ortaya çıktı ve genişletilmiş cotyledons ve ortaya çıkan ilk gerçek yaprakları gösterdi. Fideler 10 mM MgCl2 + %0.015...
Domates fidelerinde bu bakteriyel suşlara karşı direnci tespit etmek için optimize edilen PstDC3000 veya PstT1 ile sel aşısı için bir protokol tanımlanmıştır. Fide direnci tahtında optimum sonuçlar için, ampirik olarak belirlenen bakteri konsantrasyonu ve yüzey aktif konsantrasyonu da dahil olmak üzere çeşitli kritik parametreler vardır22. PstDC3000 için optik yoğunluk, Pto/Prf kümesini içeren dirençli bir çeşitte tam hayatta kalma ve ...
Yazarların açıklayacak bir şeyi yok.
Biz hastalık veya direnç sonuçları üzerinde medya hacminin etkisini test için Jamie Calma teşekkür ederiz. Lewis Lab'dan Dr. Maël Baudin ve Dr. Karl J. Scheiber'a el yazması hakkında yapıcı yorum ve önerilerde bulunduklarından dolayı teşekkür ederiz. Lewis laboratuvarında bitki bağışıklığı üzerine yapılan araştırmalar USDA ARS 2030-21000-046-00D ve 2030-21000-050-00D (JDL) ve NSF Biyolojik Bilimler Müdürlüğü IOS-1557661 (JDL) tarafından desteklendi.
Name | Company | Catalog Number | Comments |
3M Tape Micropore 1/2" x 10 YD CS 240 (1.25 cm x 9.1 m) | VWR International | 56222-182 | |
3mm borosilicate glass beads | Friedrich & Dimmock | GB3000B | |
Bacto peptone | BD | 211677 | |
Bacto agar | BD | 214010 | |
Biophotometer Plus | Eppendorf | E952000006 | |
Biosafety cabinet, class II type A2 | |||
BRAND Disposable Plastic Cuvettes, Polystyrene | VWR International | 47744-642 | |
Chenille Kraft Flat Wood Toothpicks | VWR International | 500029-808 | |
cycloheximide | Research Products International | C81040-5.0 | |
Dibasic potassium phosphate anhydrous, ACS grade | Fisher Scientific | P288-500 | |
Dimethylformamide | |||
Dissecting microscope (Magnification of at least 10x) | |||
Ethanol - 190 Proof | |||
Falcon polystyrene 96 well microplates, flat-bottom | Fisher Scientific | 08-772-3 | |
Glass Alcohol Burner Wick | Fisher Scientific | S41898A / No. W-125 | |
Glass Alcohol Burners | Fisher Scientific | S41898 / No. BO125 | |
Glycerol ACS reagent | VWR International | EMGX0185-5 | |
Kimberly-Clark™ Kimtech Science™ Kimwipes™ Delicate Task Wipers | Fisher Scientific | 06-666-A | |
Magnesium chloride, ACS grade | VWR International | 97061-356 | |
Magnesium sulfate heptahydrate, ACS grade | VWR International | 97062-130 | |
Microcentrifuge tubes, 1.5 mL | |||
Microcentrifuge tubes, 2.2 mL | |||
Mini Beadbeater-96, 115 volt | Bio Spec Products Inc. | 1001 | |
Murashige & Skoog, Basal Salts | Caisson Laboratories, Inc. | MSP01-50LT | |
Pipet-Lite XLS LTS 8-CH Pipet 20-200uL | Rainin | L8-200XLS | |
Pipet-Lite XLS LTS 8-CH Pipet 2-20uL | Rainin | L8-20XLS | |
Polystyrene 100mm x 25mm sterile petri dish | VWR International | 89107-632 | |
Polystyrene 150mm x 15mm sterile petri dish | Fisher Scientific | FB08-757-14 | |
Polystyrene 150x15mm sterile petri dish | Fisher Scientific | 08-757-148 | |
Pure Bright Germicidal Ultra Bleach 5.7% Available Chlorine (defined as 100% bleach) | Staples | 1013131 | |
Rifampicin | Gold Biotechnology | R-120-25 | |
Silwet L-77 (non-ionic organosilicone surfactant co-polymer C13H34O4Si3 surfactant) | Fisher Scientific | NCO138454 | |
Tips LTS 20 μL 960/10 GPS-L10 | Rainin | 17005091 | |
Tips LTS 250 μL 960/10 GPS-L250 | Rainin | 17005093 | |
VWR dissecting forceps fine tip, 4.5" | VWR International | 82027-386 |
An erratum was issued for: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay. The Introduction, Protocol, Representative Results and Discussion sections were updated.
The last paragraph of the Introduction section was updated from:
In the seedling flood assay described in this protocol, tomato seedlings are grown on Petri dishes of sterile Murashige and Skoog (MS) media for 10 days and then are flooded with an inoculum containing the bacteria of interest and a surfactant. Following flooding, seedlings can be quantitatively evaluated for disease resistance via bacterial growth assays. Additionally, seedling survival or death can act as a discrete resistance or disease phenotype 7–14 days after flooding. This approach offers a high-throughput alternative for screening large numbers of wild tomato accessions for resistance to Pst race 1 strains, such as Pst strain T1 (PstT1), and can easily be adapted to other bacterial strains of interest.
to:
In the seedling flood assay described in this protocol, tomato seedlings are grown on Petri dishes of sterile Murashige and Skoog (MS) media for 10 days and then are flooded with an inoculum containing the bacteria of interest and a surfactant. Following flooding, seedlings can be quantitatively evaluated for disease resistance via bacterial growth assays. Additionally, seedling survival or death can act as a discrete resistance or disease phenotype 7–14 days after flooding. This approach offers a high-throughput alternative for screening large numbers of wild tomato accessions for resistance to Pst race 1 strains, such as Pst strain 19 (Pst19), and can easily be adapted to other bacterial strains of interest.
Step 4.8 of the Protocol section was updated from:
to:
Step 5.2 of the Protocol section was updated from:
to:
Step 5.6 of the Protocol section was updated from:
to:
Step 6 of the Protocol section was updated from:
6. Preparation of PstT1 inoculum
to
6. Preparation of Pst19 inoculum
Step 6.2 of the Protocol section was updated from:
to:
Step 6.3 of the Protocol section was updated from:
to:
Step 8.3 of the Protocol section was updated from:
to:
Step 8.11 of the Protocol section was updated from:
to:
Step 10.7 of the Protocol section was updated from:
Genotype1 Column A | Tissue Weight (g) Column B | # of Colonies in a spot Column C | Dilution factor for spot2 Column D | Adjusted # of Colonies3 Column E | Dilution factor for serial dilution Column F | Total # of Colonies Column G (cfu/0.01 g)4 | Average # of Colonies (cfu/0.01 g) Column H | Average Log Growth (cfu/0.01 g (log10)) Column I |
Sample 1 | 0.004 g | 10 | 200 | calculated as: (C2 x 0.01 g) / B2 = 25 | 1000 | calculated as: (D2 x E2 x F2) = 5000000 | average for sample 1 through last sample: (ie. average G1:G3) = 7000000 | log of average ie. log(H2) = 6.85 |
Sample 2 | 0.003 g | 15 | 200 | 50 | 1000 | 10000000 | ||
Sample 3 | 0.002 g | 6 | 200 | 30 | 1000 | 6000000 | ||
1Data shown for 3 samples | ||||||||
2Based on plating 5 µL x 200 for 1 mL | ||||||||
3Cotyledons are too small to core so colony counts were normalized to 0.01 g of tissue based on the average mass of one MoneyMaker-PtoS cotyledon (data not shown) | ||||||||
4Adjusted per mL based on volume plated |
Table 1: Sample calculations for seedling bacterial growth assay. Sample calculations demonstrate how to normalize bacterial counts and determine log bacterial growth.
to:
Genotype1 Column A | Tissue Weight (g) Column B | # of Colonies in a spot Column C | Dilution factor for spot2 Column D | Adjusted # of Colonies3 Column E | Dilution factor for serial dilution Column F | Total # of Colonies Column G (cfu/0.01 g)4 | Average # of Colonies (cfu/0.01 g) Column H | Average Log Growth (cfu/0.1 g (log10)) Column I |
Sample 1 | 0.04 g | 10 | 200 | calculated as: (C2 x 0.1 g) / B2 = 25 | 1000 | calculated as: (D2 x E2 x F2) = 5000000 | average for sample 1 through last sample: (ie. average G1:G3) = 7000000 | log of average ie. log(H2) = 6.85 |
Sample 2 | 0.03 g | 15 | 200 | 50 | 1000 | 10000000 | ||
Sample 3 | 0.02 g | 6 | 200 | 30 | 1000 | 6000000 | ||
1Data shown for 3 samples | ||||||||
2Based on plating 5 µL x 200 for 1 mL | ||||||||
3Cotyledons are too small to core so colony counts were normalized to 0.1 g of tissue based on the average mass of one MoneyMaker-PtoS cotyledon (data not shown) | ||||||||
4Adjusted per mL based on volume plated |
Table 1: Sample calculations for seedling bacterial growth assay. Sample calculations demonstrate how to normalize bacterial counts and determine log bacterial growth.
Step 11.3 of the Protocol section was updated from:
to:
Figure 4 in the Protocol section was updated from:
Figure 4: Schematic representation of expected phenotypes for seedling resistance and death in various genetic backgrounds. (A) Seedlings of Rio Grande-PtoR and the near-isogenic cultivar Rio Grande-PtoS are displayed 7 days after flooding with PstDC3000 (OD600 = 0.005) + 0.015% surfactant. Rio Grande-PtoR displays consistent resistance, and Rio Grande-PtoS displays consistent susceptibility to infection with PstDC3000. These lines give rise to discrete and binary phenotypes. (B) Seedlings of a wild accession, such as Solanum neorickii LA1329, are shown 10 days after flooding with PstT1 (OD600 = 0.0075) + 0.015% surfactant. Seedlings display phenotypic variability but were recorded as binary phenotypes. The amount of phenotypic variability and the method of phenotyping (binary resistance or resistance spectrum) will depend on the particular accession tested. (C) Mapping populations generated by outcrossing wild accessions to susceptible cultivars may display a wider spectrum of phenotypes in F2 segregating populations. In this case, it may be most appropriate to record seedling phenotypes on a spectrum. Highly susceptible seedlings from a mapping population may be phenotyped for death as early as day 7 when flooded with PstT1, and typically show a brown apical meristem, no to very little extension of the epicotyl, and no new, green vegetative growth. The apical meristem of susceptible seedlings may stay green or very light brown for more time, and there may be some extension of the epicotyl and very little vegetative growth, which turns brown and arrests by day 10. Individual seedlings can be phenotyped for resistance based on the amount of new and ongoing vegetative growth by day 14. Seedlings can then be grouped based on the phenotypes described above into different categories of resistance such as weak, medium, or strong resistance. Please click here to view a larger version of this figure.
to:
Figure 4: Schematic representation of expected phenotypes for seedling resistance and death in various genetic backgrounds. (A) Seedlings of Rio Grande-PtoR and the near-isogenic cultivar Rio Grande-PtoS are displayed 7 days after flooding with PstDC3000 (OD600 = 0.005) + 0.015% surfactant. Rio Grande-PtoR displays consistent resistance, and Rio Grande-PtoS displays consistent susceptibility to infection with PstDC3000. These lines give rise to discrete and binary phenotypes. (B) Seedlings of a wild accession, such as Solanum neorickii LA1329, are shown 10 days after flooding with Pst19 (OD600 = 0.0075) + 0.015% surfactant. Seedlings display phenotypic variability but were recorded as binary phenotypes. The amount of phenotypic variability and the method of phenotyping (binary resistance or resistance spectrum) will depend on the particular accession tested. (C) Mapping populations generated by outcrossing wild accessions to susceptible cultivars may display a wider spectrum of phenotypes in F2 segregating populations. In this case, it may be most appropriate to record seedling phenotypes on a spectrum. Highly susceptible seedlings from a mapping population may be phenotyped for death as early as day 7 when flooded with Pst19, and typically show a brown apical meristem, no to very little extension of the epicotyl, and no new, green vegetative growth. The apical meristem of susceptible seedlings may stay green or very light brown for more time, and there may be some extension of the epicotyl and very little vegetative growth, which turns brown and arrests by day 10. Individual seedlings can be phenotyped for resistance based on the amount of new and ongoing vegetative growth by day 14. Seedlings can then be grouped based on the phenotypes described above into different categories of resistance such as weak, medium, or strong resistance. Please click here to view a larger version of this figure.
The second paragraph of the Representative Results section was updated from:
Phenotypic screening of wild accessions using the seedling resistance assay
Figure 6 shows representative results for seedlings of susceptible and resistant accessions 10–14 days after flooding with PstT1. Susceptible accessions include RG-PtoR, S. pimpinellifolium LA1375, and S. pimpinellifolium LA1606, and resistant accessions include S. neorickii LA1329. Ten-day-old seedlings were flooded with 10 mM MgCl2 + 0.015% surfactant as a negative control, and PstT1 at an optical density of 0.0075 + 0.015% surfactant. The seedlings were phenotyped at least 10 days after flooding, as PstT1-infected seedlings died more slowly than PstDC3000-infected seedlings. Mock-inoculated seedlings were green, healthy, and actively growing. This control is important to ensure that the accessions are not sensitive to the concentration of surfactant, and to ensure there is no bacterial contamination. Susceptible accessions (Rio Grande-PtoR [n = 7], S. pimpinellifolium LA1375 [n = 7], and S. pimpinellifolium LA1606 [n = 5]) were dead, had brown apical meristems, and lacked new growth 10–14 days after inoculation with PstT1. In contrast, two S. neorickii LA1329 (n = 3) seedlings displayed a high level of new, green growth and survived infection with PstT1 (Figure 6). Three LA1329 seedlings did not germinate. Typically, 5–7 individuals were screened for each accession in a primary screen to determine the prevalence of resistance in the population. When a more genetically complex wild accession, such as LA1329, is flooded with PstT1, the resistance phenotypes display slightly more variability among individual seedlings, compared to Moneymaker-PtoR treated with PstDC3000. However, the resistance phenotypes were usually less variable than those seen in F2 mapping populations. Thus, binary phenotyping criteria was used for LA1329.
to:
Phenotypic screening of wild accessions using the seedling resistance assay
Figure 6 shows representative results for seedlings of susceptible and resistant accessions 10–14 days after flooding with Pst19. Susceptible accessions include RG-PtoR, S. pimpinellifolium LA1375, and S. pimpinellifolium LA1606, and resistant accessions include S. neorickii LA1329. Ten-day-old seedlings were flooded with 10 mM MgCl2 + 0.015% surfactant as a negative control, and Pst19 at an optical density of 0.0075 + 0.015% surfactant. The seedlings were phenotyped at least 10 days after flooding, as Pst19-infected seedlings died more slowly than PstDC3000-infected seedlings. Mock-inoculated seedlings were green, healthy, and actively growing. This control is important to ensure that the accessions are not sensitive to the concentration of surfactant, and to ensure there is no bacterial contamination. Susceptible accessions (Rio Grande-PtoR [n = 7], S. pimpinellifolium LA1375 [n = 7], and S. pimpinellifolium LA1606 [n = 5]) were dead, had brown apical meristems, and lacked new growth 10–14 days after inoculation with Pst19. In contrast, two S. neorickii LA1329 (n = 3) seedlings displayed a high level of new, green growth and survived infection with Pst19 (Figure 6). Three LA1329 seedlings did not germinate. Typically, 5–7 individuals were screened for each accession in a primary screen to determine the prevalence of resistance in the population. When a more genetically complex wild accession, such as LA1329, is flooded with Pst19, the resistance phenotypes display slightly more variability among individual seedlings, compared to Moneymaker-PtoR treated with PstDC3000. However, the resistance phenotypes were usually less variable than those seen in F2 mapping populations. Thus, binary phenotyping criteria was used for LA1329.
Figure 6 in the Representative Results section was updated from:
Figure 6: Phenotypic characterization of resistance or disease symptoms 10–14 days post-infection in wild accessions. Rio Grande-PtoR, S. pimpinellifolium LA1606, S. pimpinellifolium LA1375 and S. neorickii LA1329 tomato seedlings were grown on 0.5x MS plates for 10 days, and then flooded with PstT1 (OD600 = 0.0075) + 0.015% surfactant. The number of surviving seedlings for each wild accession out of the total number tested is shown. Scale bar = 1 cm. Please click here to view a larger version of this figure.
to:
Figure 6: Phenotypic characterization of resistance or disease symptoms 10–14 days post-infection in wild accessions. Rio Grande-PtoR, S. pimpinellifolium LA1606, S. pimpinellifolium LA1375 and S. neorickii LA1329 tomato seedlings were grown on 0.5x MS plates for 10 days, and then flooded with Pst19 (OD600 = 0.0075) + 0.015% surfactant. The number of surviving seedlings for each wild accession out of the total number tested is shown. Scale bar = 1 cm. Please click here to view a larger version of this figure.
The third paragraph of the Representative Results section was updated from:
Quantitative assessment of bacterial growth using the seedling flood assay
To confirm that the observed resistance in LA1329 to PstT1 resulted in lower bacterial growth, bacterial growth assays were carried out in tomato seedlings. The level of PstT1 growth in Moneymaker-PtoS and S. neorickii LA1329 was determined 4 days post-infection. Moneymaker-PtoS is a near-isogenic line with consistent susceptibility among individual seedlings. Wild accessions such as S. neorickii LA1329 are often more genetically complex. LA1329 displays approximately 60% resistance to PstT1 across the population22. Because seedlings may drop their cotyledons after infection, one seedling was grown on each plate to correlate bacterial growth in the harvested cotyledon with overall seedling survival or death as determined phenotypically at least 10 days after flooding. The bacterial counts on day 4 for each seedling were normalized to 0.01 g of tissue and converted to log growth (CFU/0.01 g(log10)). Log growth for phenotypically resistant LA1329 seedlings (LA1329RES) or phenotypically susceptible seedlings (LA1329SUS) were separately pooled and compared to each other and the susceptible cultivar Moneymaker-PtoS. For example, there was a 1.7 log difference in bacterial growth between LA1329RES (log 6.3) and LA1329SUS (log 8.0), and a 1.6 log difference between LA1329RES (log 6.3) and Moneymaker-PtoS (log 7.9) (Figure 7). Therefore, phenotypic resistance correlated with quantitative resistance in the seedling assays.
to:
Quantitative assessment of bacterial growth using the seedling flood assay
To confirm that the observed resistance in LA1329 to Pst19 resulted in lower bacterial growth, bacterial growth assays were carried out in tomato seedlings. The level of Pst19 growth in Moneymaker-PtoS and S. neorickii LA1329 was determined 4 days post-infection. Moneymaker-PtoS is a near-isogenic line with consistent susceptibility among individual seedlings. Wild accessions such as S. neorickii LA1329 are often more genetically complex. LA1329 displays approximately 60% resistance to Pst19 across the population22. Because seedlings may drop their cotyledons after infection, one seedling was grown on each plate to correlate bacterial growth in the harvested cotyledon with overall seedling survival or death as determined phenotypically at least 10 days after flooding. The bacterial counts on day 4 for each seedling were normalized to 0.01 g of tissue and converted to log growth (CFU/0.01 g(log10)). Log growth for phenotypically resistant LA1329 seedlings (LA1329RES) or phenotypically susceptible seedlings (LA1329SUS) were separately pooled and compared to each other and the susceptible cultivar Moneymaker-PtoS. For example, there was a 1.7 log difference in bacterial growth between LA1329RES (log 6.3) and LA1329SUS (log 8.0), and a 1.6 log difference between LA1329RES (log 6.3) and Moneymaker-PtoS (log 7.9) (Figure 7). Therefore, phenotypic resistance correlated with quantitative resistance in the seedling assays.
Figure 7 in the Representative Results section was updated from:
x
Figure 7: Resistant Solanum neorickii LA1329 seedlings support lower bacterial growth than Moneymaker-PtoS or susceptible S. neorickii LA1329. Bacterial counts were determined 4 days post-inoculation from S. neorickii LA1329 (n = 14) and Moneymaker-PtoS (n = 10) seedlings infected with PstT1 and normalization was performed to 0.01 g of tissue. For LA1329, the two phenotypic groups, susceptible (SUS) or resistant (RES), were observed and counted separately. Above the bar * = statistically significant difference determined by a one-factor analysis of variance. A general linear model procedure (p < 0.001) followed by a multiple comparison of means using Tukey's post hoc test was used. Error bars = standard error. The figure indicates one representative experiment. Please click here to view a larger version of this figure.
x
Figure 7: Resistant Solanum neorickii LA1329 seedlings support lower bacterial growth than Moneymaker-PtoS or susceptible S. neorickii LA1329. Bacterial counts were determined 4 days post-inoculation from S. neorickii LA1329 (n = 14) and Moneymaker-PtoS (n = 10) seedlings infected with Pst19 and normalization was performed to 0.1 g of tissue. For LA1329, the two phenotypic groups, susceptible (SUS) or resistant (RES), were observed and counted separately. Above the bar * = statistically significant difference determined by a one-factor analysis of variance. A general linear model procedure (p < 0.001) followed by a multiple comparison of means using Tukey's post hoc test was used. Error bars = standard error. The figure indicates one representative experiment. Please click here to view a larger version of this figure.
The first paragraph of the Discussion section was updated from:
A protocol for flood inoculation with PstDC3000 or PstT1 optimized to detect resistance to these bacterial strains in tomato seedlings is described. There are several critical parameters for optimal results in the seedling resistance assay, including bacterial concentration and surfactant concentration, which were empirically determined22. For PstDC3000, the optical density was optimized to achieve complete survival on a resistant cultivar containing the Pto/Prf cluster and complete death on a susceptible cultivar lacking the Pto/Prf cluster22. For a strain such as PstT1, where there are no known resistant varieties, the optical density was optimized to be the lowest possible for consistent and complete plant death22. Uppalapati et al.24 designed a tomato seedling assay to investigate the pathogenesis of PstDC3000 and the virulence function of coronatine. In this virulence assay, infections were performed using bacteria concentrated to an OD600 of 0.124, 20x higher than the optical density of strains used in our resistance assay. Recognition of PstDC3000 effectors AvrPto and AvrPtoB in tomato seedlings carrying the Pto/Prf gene cluster results in ETI and a macroscopic HR22. In the context of a strong immune response such as ETI, a lower bacterial titer was used for PstDC3000 to avoid overwhelming genetic resistance from the Pto/Prf gene cluster22. In addition, these results suggest that a high bacterial concentration could overwhelm weaker immune responses such as PTI or quantitative partial resistance, where multiple genes contribute to the overall phenotype. Surfactant is necessary for the bacteria to adhere to the leaf surface; however, high concentrations can cause chlorosis of the leaf22. We previously tested a range of surfactant concentrations to empirically determine the ideal concentration in 10-day-old tomato seedlings22. When testing new species that may differ in their sensitivity to surfactant, the surfactant concentration should be optimized to identify a concentration that does not cause damage or chlorosis in the absence of bacteria. Appropriate assay conditions will require optimization of a surfactant concentration that does not cause damage, and a bacterial concentration that causes disease in all susceptible controls.
to:
A protocol for flood inoculation with PstDC3000 or Pst19 optimized to detect resistance to these bacterial strains in tomato seedlings is described. There are several critical parameters for optimal results in the seedling resistance assay, including bacterial concentration and surfactant concentration, which were empirically determined22. For PstDC3000, the optical density was optimized to achieve complete survival on a resistant cultivar containing the Pto/Prf cluster and complete death on a susceptible cultivar lacking the Pto/Prf cluster22. For a strain such as Pst19, where there are no known resistant varieties, the optical density was optimized to be the lowest possible for consistent and complete plant death22. Uppalapati et al.24 designed a tomato seedling assay to investigate the pathogenesis of PstDC3000 and the virulence function of coronatine. In this virulence assay, infections were performed using bacteria concentrated to an OD600 of 0.124, 20x higher than the optical density of strains used in our resistance assay. Recognition of PstDC3000 effectors AvrPto and AvrPtoB in tomato seedlings carrying the Pto/Prf gene cluster results in ETI and a macroscopic HR22. In the context of a strong immune response such as ETI, a lower bacterial titer was used for PstDC3000 to avoid overwhelming genetic resistance from the Pto/Prf gene cluster22. In addition, these results suggest that a high bacterial concentration could overwhelm weaker immune responses such as PTI or quantitative partial resistance, where multiple genes contribute to the overall phenotype. Surfactant is necessary for the bacteria to adhere to the leaf surface; however, high concentrations can cause chlorosis of the leaf22. We previously tested a range of surfactant concentrations to empirically determine the ideal concentration in 10-day-old tomato seedlings22. When testing new species that may differ in their sensitivity to surfactant, the surfactant concentration should be optimized to identify a concentration that does not cause damage or chlorosis in the absence of bacteria. Appropriate assay conditions will require optimization of a surfactant concentration that does not cause damage, and a bacterial concentration that causes disease in all susceptible controls.
The third paragraph of the Discussion section was updated from:
Pst is a foliar pathogen that preferentially colonizes the aerial parts of tomato seedlings, including the cotyledons24 (Figure 3). Therefore, qualitative phenotyping in the seedling flood assay focuses on growth and disease symptoms in aerial portions of the seedling, and tissue for the bacterial growth assay is sampled from the cotyledons for quantitative analysis. After flood inoculation, seedlings may die within 7–10 days after inoculation with PstDC3000 or 10–14 days after inoculation with PstT1, as discussed in section 11. Seedling death is visualized by a brown apical meristem, arrested epicotyl elongation, and/or arrested vegetative growth. If different bacterial strains are used, the timing will have to be empirically determined. In addition, the progression of disease on control plants should be monitored daily after flooding until a consistent time frame from the onset of disease symptoms to seedling death can be identified. Depending on the genotypes and treatments used in the flood assay, seedling phenotypes can be recorded as binary phenotypes or on a disease spectrum (Figure 4). A broader spectrum of phenotypes may be observed when flood inoculating F2 mapping populations from wild tomato accessions crossed to susceptible cultivars (Figure 4C). It may be best to phenotype segregating populations on a disease spectrum depending on how quickly the seedling dies and the degree of new vegetative growth and branching (Figure 4C). The seedling flood assay can also be used in conjunction with the seedling bacterial growth assay to quantitatively assess levels of bacterial growth associated with qualitative phenotypes in individual seedlings (Figure 7). Very large reductions (i.e., ~log 3) in bacterial growth or strong resistance in resistant seedlings of a wild accession compared to a susceptible cultivar suggest that the underlying genetic basis of resistance may be due to ETI22. Smaller reductions in bacterial growth (i.e., ~log 1.7), as observed in LA1329 seedlings, may be due to the contribution of weaker resistance from quantitative trait loci and/or PTI. Thus, the seedling growth assay can be an important tool in further characterizing resistance in wild tomato lines.
to:
Pst is a foliar pathogen that preferentially colonizes the aerial parts of tomato seedlings, including the cotyledons24 (Figure 3). Therefore, qualitative phenotyping in the seedling flood assay focuses on growth and disease symptoms in aerial portions of the seedling, and tissue for the bacterial growth assay is sampled from the cotyledons for quantitative analysis. After flood inoculation, seedlings may die within 7–10 days after inoculation with PstDC3000 or 10–14 days after inoculation with Pst19, as discussed in section 11. Seedling death is visualized by a brown apical meristem, arrested epicotyl elongation, and/or arrested vegetative growth. If different bacterial strains are used, the timing will have to be empirically determined. In addition, the progression of disease on control plants should be monitored daily after flooding until a consistent time frame from the onset of disease symptoms to seedling death can be identified. Depending on the genotypes and treatments used in the flood assay, seedling phenotypes can be recorded as binary phenotypes or on a disease spectrum (Figure 4). A broader spectrum of phenotypes may be observed when flood inoculating F2 mapping populations from wild tomato accessions crossed to susceptible cultivars (Figure 4C). It may be best to phenotype segregating populations on a disease spectrum depending on how quickly the seedling dies and the degree of new vegetative growth and branching (Figure 4C). The seedling flood assay can also be used in conjunction with the seedling bacterial growth assay to quantitatively assess levels of bacterial growth associated with qualitative phenotypes in individual seedlings (Figure 7). Very large reductions (i.e., ~log 3) in bacterial growth or strong resistance in resistant seedlings of a wild accession compared to a susceptible cultivar suggest that the underlying genetic basis of resistance may be due to ETI22. Smaller reductions in bacterial growth (i.e., ~log 1.7), as observed in LA1329 seedlings, may be due to the contribution of weaker resistance from quantitative trait loci and/or PTI. Thus, the seedling growth assay can be an important tool in further characterizing resistance in wild tomato lines.
The fourth paragraph of the Discussion section was updated from:
Typically, genetic screens have been performed on four- to five-week-old adult tomato plants to identify the genetic basis of P. syringae resistance in wild accessions20,21. Adult tomato plants require much longer growth times, require more space in the growth chamber, and are much larger plants, which means that usually few individuals are screened for each line. The seedling flood assay provides a powerful, alternative approach in the identification of P. syringae resistance in wild tomato accessions. Screening at the seedling stage permits a large sample size to be tested which can be particularly advantageous in detecting resistance in genetically complex populations. Reduced growth chamber space requirements and growth time facilitate a high-throughput approach and rapid detection of natural resistance in wild accessions to emerging pathogens. Furthermore, P. syringae resistance that was identified at the seedling stage in this assay is not restricted to the developmental stage. S. neorickii LA1329 and S. habrochaites LA1253 were initially identified at the seedling stage and also display resistance to PstT1 in adult plants as previously described22.
to:
Typically, genetic screens have been performed on four- to five-week-old adult tomato plants to identify the genetic basis of P. syringae resistance in wild accessions20,21. Adult tomato plants require much longer growth times, require more space in the growth chamber, and are much larger plants, which means that usually few individuals are screened for each line. The seedling flood assay provides a powerful, alternative approach in the identification of P. syringae resistance in wild tomato accessions. Screening at the seedling stage permits a large sample size to be tested which can be particularly advantageous in detecting resistance in genetically complex populations. Reduced growth chamber space requirements and growth time facilitate a high-throughput approach and rapid detection of natural resistance in wild accessions to emerging pathogens. Furthermore, P. syringae resistance that was identified at the seedling stage in this assay is not restricted to the developmental stage. S. neorickii LA1329 and S. habrochaites LA1253 were initially identified at the seedling stage and also display resistance to Pst19 in adult plants as previously described22.
Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi
Izin talebiThis article has been published
Video Coming Soon
JoVE Hakkında
Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır