Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
L’essai d’inondation de semis facilite le criblage rapide des adhésions de tomate sauvage pour la résistance à la bactérie de seringue de Pseudomonas. Cet essai, utilisé en conjonction avec l’essai de croissance bactérienne de semis, peut aider à caractériser davantage la résistance sous-jacente à la bactérie, et peut être employé pour dépister la cartographie des populations pour déterminer la base génétique de la résistance.
La tomate est une culture d’importance agronomique qui peut être infectée par les seringues Pseudomonas, une bactérie Gram-négative, entraînant une maladie bactérienne des taches. La tomate-P. syringae pv. le pathosystem de tomate est employé couramment pour disséquer la base génétique des réponses innées de plante et de résistance de la maladie. Alors que la maladie a été gérée avec succès pendant de nombreuses décennies grâce à l’introduction de l’amas de gènes Pto/Prf de Solanum pimpinellifolium dans la tomate cultivée, les souches de la race 1 des seringues P. ont évolué pour surmonter la résistance conférée par le groupe génétique Pto/Prf et se produisent dans le monde entier.
Les espèces de tomates sauvages sont d’importants réservoirs de diversité naturelle dans la reconnaissance des agents pathogènes, parce qu’elles ont évolué dans divers environnements avec différentes pressions pathogènes. Dans les écrans typiques pour la résistance aux maladies dans la tomate sauvage, les plantes adultes sont utilisées, ce qui peut limiter le nombre de plantes qui peuvent être examinées en raison de leur temps de croissance prolongée et de plus grandes exigences d’espace de croissance. Nous avons mis au point une méthode pour dépister les semis de tomates vieux de 10 jours pour détecter la résistance, ce qui réduit au minimum le temps de croissance des plantes et l’espace de la chambre de croissance, permet un roulement rapide des plantes et permet de tester de grandes tailles d’échantillons. Les résultats de la survie ou de la mort peuvent être traités comme des phénotypes discrets ou sur une échelle de résistance définie par la quantité de nouvelle croissance des semis survivants après les inondations. Cette méthode a été optimisée pour filtrer les semis de tomates vieux de 10 jours pour la résistance à deux souches de seringues P. et peuvent facilement être adaptées à d’autres souches de seringues P.
Pseudomonas syringae est une bactérie pathogène Gram-négative qui infecte un large éventail d’hôtes végétaux. Les bactéries pénètrent dans la plante hôte par les stomates ou les blessures physiques et prolifèrent dans l’apoplast1. Les plantes ont développé une réponse immunitaire à deux niveaux pour se protéger contre l’infection par des agents pathogènes bactériens. Le premier niveau se produit à la surface des cellules végétales, où les récepteurs de reconnaissance des motifs sur la membrane des cellules végétales perçoivent des modèles moléculaires hautement conservés associés aux agents pathogènes (PAMP) dans un processus appelé immunité déclenchée par pAMP (PTI)2. Au cours de ce processus, la plante hôte dérégère les voies de réponse de défense, y compris le dépôt de callose à la paroi cellulaire, la fermeture des stomates, la production d’espèces réactives d’oxygène, et l’induction des gènes liés à la pathogénie.
Les bactéries peuvent surmonter PTI en utilisant un système de sécrétion de type III pour fournir des protéines, appelés effecteurs, directement dans la cellule végétale3. Les protéines Effector ciblent généralement les composants de PTI et favorisent la virulence pathogène4. Le deuxième niveau d’immunité végétale se produit dans la cellule végétale lors de la reconnaissance des protéines effectrices. Cette reconnaissance dépend des gènes de résistance, qui codent la répétition du site de liaison nucléotide contenant des récepteurs (NLR). Les NLR sont capables soit de reconnaître directement les effecteurs, soit de reconnaître leur activité sur une cible de virulence ou leurre5. Ils déclenchent alors une réponse immunitaire secondaire dans un processus appelé l’immunité effector-déclenchée (ETI), qui est souvent associée à une réponse hypersensible (HR), une forme de mort cellulaire localisée au site de l’infection6. Contrairement à la résistance du gène pour gène associée à l’ETI, les plantes peuvent présenter une résistance partielle quantitative, qui dépend de la contribution de multiples gènes7.
P. syringae pv. tomate (Pst) est l’agent causal de la tache bactérienne sur la tomate et est un problème agricole persistant. Les souches prédominantes sur le terrain ont généralement été les souches de la course Pst 0 qui expriment l’un ou l’autre ou les deux des effecteurs de type III AvrPto et AvrPtoB. DC3000 (PstDC3000) est une souche représentative de race 0 et un modèle pathogène qui peut causer des taches bactériennes dans la tomate. Pour lutter contre la maladie bactérienne des taches, les éleveurs ont introgressé le Pto [P. syringae pv. tomate]/Prf [Pto résistance et sensibilité au fenthion] groupe génétique de l’espèce de tomate sauvage Solanum pimpinellifolium dans les cultivars modernes8,9. Le gène Pto code une protéine sérine-threonine kinase protéine qui, avec le Prf NLR, confère une résistance à PstDC3000 via la reconnaissance des effecteurs AvrPto et AvrPtoB10,11,12,13,14. Cependant, cette résistance est inefficace contre les souches émergentes de la course 1, ce qui permet leur propagation rapide et agressive ces dernières années15,16. Les souches de la course 1 échappent à la reconnaissance par le cluster Pto/Prf, parce qu’AvrPto est soit perdu, soit muté dans ces souches, et AvrPtoB semble s’accumuler au minimum15,17,18.
Les populations de tomates sauvages sont d’importants réservoirs de variation naturelle pour la résistance au Pst et ont déjà été utilisées pour identifier les loci de résistance potentielle19,20,21. Cependant, les écrans actuels pour la résistance aux agents pathogènes utilisent des plantes adultes de 4 à 5 semaines20,21. Par conséquent, ils sont limités par le temps de croissance, l’espace de chambre de croissance, et la taille relativement petite d’échantillon. Pour répondre aux limites des approches conventionnelles, nous avons développé un essai de résistance aux seringues de tomate P. à haut débit à l’aide d’semis de tomates de 10 jours22. Cette approche offre plusieurs avantages par rapport à l’utilisation de plantes adultes : à savoir, un temps de croissance plus court, des besoins d’espace réduits et un débit plus élevé. En outre, nous avons démontré que cette approche récapitule fidèlement les phénotypes de résistance aux maladies observés chez les plantes adultes22.
Dans l’analyse d’inondation des semis décrite dans ce protocole, les semis de tomates sont cultivés sur des boîtes de Petri de murashige stérile et Skoog (MS) médias pendant 10 jours, puis sont inondés d’un inoculum contenant les bactéries d’intérêt et un surfactant. Après les inondations, les semis peuvent être évalués quantitativement pour la résistance aux maladies par le biais d’essais de croissance bactérienne. En outre, la survie ou la mort des semis peut agir comme une résistance discrète ou un phénotype de la maladie 7 à 14 jours après l’inondation. Cette approche offre une alternative à haut débit pour le dépistage d’un grand nombre d’accessions à la tomate sauvage pour la résistance aux souches de la course Pst 1, telles que la souche Pst T1(PstT1), et peut facilement être adaptée à d’autres souches bactériennes d’intérêt.
Access restricted. Please log in or start a trial to view this content.
1. Préparation et utilisation d’armoires de biosécurité
2. Préparation des supports végétaux
3. Préparation des matériaux végétaux et conditions de croissance
Figure 1 : Stade de développement des semis typiques de tomates de 10 jours. Les graines de tomates Rio Grande-Ptor ont été stérilisées, plaquées et stratifiées pendant au moins 3 jours dans l’obscurité à 4 oC. Les semis ont été cultivés sur des plaques de MS de 0,5x pendant 10 jours à 22 oC avant d’être inondés. Typiquement, à 10 jours, les cotyledons sont complètement élargis, et les premières vraies feuilles commencent à émerger. S’il vous plaît cliquez ici pour voir une version plus grande de ce chiffre.
4. Préparation des médias du roi B23 (KB)
5. Maintien des souches bactériennes et des conditions culturelles
6. Préparation de PstT1 inoculum
7. Préparation de PstDC3000 inoculum
8. Méthode d’inondation des semis de tomates
9. Stérilisation de surface des cotyledons pour l’essai de croissance bactérienne
10. Essai de croissance bactérienne
Figure 2 : Dilutions en série pour les essais de croissance bactérienne des semis. (A) Le tissu foliaire macéré provenant de plantes infectées est dilué avant le comptage des colonies. Les dilutions sont effectuées dans une plaque de 96 puits (100 est non diluée). Typiquement, les dilutions sont faites de 10-1 à 10-5. (B) Plaquettes de dilutions pour le nombre de colonies bactériennes. Un total de 5 L de chaque colonne de la série de dilution est plaqué, de la plus diluée à la plus concentrée. Une fois que les colonies ont complètement séché, la plaque est incubée à 28 oC pour 36-48 h. Les colonies sont comptées sous un microscope disséquant 10x. S’il vous plaît cliquez ici pour voir une version plus grande de ce chiffre.
Génotype1 Colonne A | Poids tissulaire (g) Colonne B | - des colonies dans une tache Colonne C | Facteur de dilution pour le spot2 Colonne D | Ajusté de Colonies3 Colonne E | Facteur de dilution pour la colonne F de dilution série | Total de colonies Colonne G (cfu/0.01 g)4 | Moyenne des colonies (cfu/0,01 g) Colonne H | Croissance moyenne des grumes (cfu/0,01 g (log10))Colonne I |
Échantillon 1 | 0,004 g | 10 | 200 | calculé comme: (C2 x 0,01 g) / B2 | 1000 | calculé comme: (D2 x E2 x F2) | moyenne pour l’échantillon 1 au dernier échantillon : (c.-à-d. G1:G3) moyen | journal de la moyenne c’est à fait. journal(H2) à 6,85 |
Échantillon 2 | 0,003 g | 15 | 200 | 50 | 1000 | 10000000 | ||
Échantillon 3 | 0,002 g | 6 | 200 | 30 | 1000 | 6000000 | ||
1 Données présentées pour 3 échantillons | ||||||||
2 Basé sur le placage de 5 l x 200 pour 1 ml | ||||||||
3 Les cotyledons sont trop petits au cœur de sorte que le nombre de colonies a été normalisé à 0,01 g de tissu basé sur la masse moyenne d’un Cotyledon MoneyMaker-PtoS (données non montrées) | ||||||||
4 Ajusté par ML en fonction du volume plaqué |
Tableau 1 : Calculs d’échantillons pour l’analyse de croissance bactérienne des semis. Les calculs d’échantillons démontrent comment normaliser les dénombrements bactériens et déterminer la croissance bactérienne des grumes.
11. Phénotypage pour la résistance
Figure 3 : Représentation schématique d’un semis de tomate. Différentes parties d’un semis de tomate sont représentées, y compris l’hypocotyl, les cotyledons, l’épiphétyl, le pic de meristem apique, et les vraies feuilles. S’il vous plaît cliquez ici pour voir une version plus grande de ce chiffre.
Figure 4 : Représentation schématique des phénotypes attendus pour la résistance aux semis et la mort dans divers milieux génétiques. (A) Les semis du Rio Grande-PtoR et du cultivar quasi isogénique Rio Grande-PtoS sont affichés 7 jours après les inondations avec PstDC3000 (OD600 - 0,005) - 0,015% surfactant. Rio Grande-Ptor affiche une résistance constante, et Rio Grande-PtoS affiche une sensibilité constante à l’infection par PstDC3000. Ces lignes donnent lieu à des phénotypes discrets et binaires. (B) Les semis d’une adhésion sauvage, tels que Solanum neorickii LA1329, sont montrés 10 jours après les inondations avec PstT1 (OD600 - 0,0075) - 0,015% surfactant. Les semis affichent une variabilité phénotypique, mais ont été enregistrés comme phénotypes binaires. La quantité de variabilité phénotypique et la méthode de phénottypage (résistance binaire ou spectre de résistance) dépendront de l’adhésion particulière testée. (C) La cartographie des populations générées par la croisement des adhésions sauvages aux cultivars sensibles peut afficher un plus large éventail de phénotypes dans les populations de ségrégation F2. Dans ce cas, il peut être plus approprié d’enregistrer les phénotypes de semis sur un spectre. Les semis très sensibles d’une population cartographique peuvent être phénotypes pour la mort dès le jour 7 lorsqu’ils sont inondés de PstT1, et montrent généralement un meristem apical brun, non à très peu d’extension de l’épiotyl, et pas de nouvelle croissance végétative verte. Le meristem apical des semis sensibles peut rester vert ou très brun clair pendant plus de temps, et il peut y avoir une certaine extension de l’épiotyl et très peu de croissance végétative, qui devient brun et les arrestations par jour 10. Les semis individuels peuvent être phénotypes pour la résistance basée sur la quantité de croissance végétative nouvelle et continue par jour 14. Les semis peuvent ensuite être regroupés en fonction des phénotypes décrits ci-dessus en différentes catégories de résistance telles que la faible, moyenne ou forte résistance. S’il vous plaît cliquez ici pour voir une version plus grande de ce chiffre.
Access restricted. Please log in or start a trial to view this content.
Détection de l’immunité PtoR-négociée dans les cultivars et les lignées isogéniques à l’aide de l’essai de résistance aux semis
La figure 5 montre des résultats représentatifs pour les cultivars Moneymaker-PtoR et Moneymaker-PtoS 7 à 10 jours après les inondations avec PstDC3000. Avant l’infection, les semis de 10 jours ont montré des cotyledons complètement émergés et agrandis et des premières feuilles vraies ?...
Access restricted. Please log in or start a trial to view this content.
Un protocole d’inoculation d’inondation avec PstDC3000 ou PstT1 optimisé pour détecter la résistance à ces souches bactériennes dans les semis de tomates est décrit. Il existe plusieurs paramètres critiques pour des résultats optimaux dans l’essai de résistance aux semis, y compris la concentration bactérienne et la concentration de surfactant, qui ont été empiriquementdéterminés 22. Pour PstDC3000, la densité optique a été optimisée pour atteindr...
Access restricted. Please log in or start a trial to view this content.
Les auteurs n’ont rien à divulguer.
Nous remercions Jamie Calma d’avoir testé l’effet du volume des médias sur les maladies ou les résultats de la résistance. Nous remercions le Dr Mael Baudin et le Dr Karl J. Scheiber du Laboratoire Lewis d’avoir fourni des commentaires et des suggestions constructifs sur le manuscrit. La recherche sur l’immunité végétale dans le laboratoire Lewis a été soutenue par l’USDA ARS 2030-21000-046-00D et 2030-21000-050-00D (JDL), et la Direction des sciences biologiques de la NSF IOS-1557661 (JDL).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
3M Tape Micropore 1/2" x 10 YD CS 240 (1.25 cm x 9.1 m) | VWR International | 56222-182 | |
3mm borosilicate glass beads | Friedrich & Dimmock | GB3000B | |
Bacto peptone | BD | 211677 | |
Bacto agar | BD | 214010 | |
Biophotometer Plus | Eppendorf | E952000006 | |
Biosafety cabinet, class II type A2 | |||
BRAND Disposable Plastic Cuvettes, Polystyrene | VWR International | 47744-642 | |
Chenille Kraft Flat Wood Toothpicks | VWR International | 500029-808 | |
cycloheximide | Research Products International | C81040-5.0 | |
Dibasic potassium phosphate anhydrous, ACS grade | Fisher Scientific | P288-500 | |
Dimethylformamide | |||
Dissecting microscope (Magnification of at least 10x) | |||
Ethanol - 190 Proof | |||
Falcon polystyrene 96 well microplates, flat-bottom | Fisher Scientific | 08-772-3 | |
Glass Alcohol Burner Wick | Fisher Scientific | S41898A / No. W-125 | |
Glass Alcohol Burners | Fisher Scientific | S41898 / No. BO125 | |
Glycerol ACS reagent | VWR International | EMGX0185-5 | |
Kimberly-Clark™ Kimtech Science™ Kimwipes™ Delicate Task Wipers | Fisher Scientific | 06-666-A | |
Magnesium chloride, ACS grade | VWR International | 97061-356 | |
Magnesium sulfate heptahydrate, ACS grade | VWR International | 97062-130 | |
Microcentrifuge tubes, 1.5 mL | |||
Microcentrifuge tubes, 2.2 mL | |||
Mini Beadbeater-96, 115 volt | Bio Spec Products Inc. | 1001 | |
Murashige & Skoog, Basal Salts | Caisson Laboratories, Inc. | MSP01-50LT | |
Pipet-Lite XLS LTS 8-CH Pipet 20-200uL | Rainin | L8-200XLS | |
Pipet-Lite XLS LTS 8-CH Pipet 2-20uL | Rainin | L8-20XLS | |
Polystyrene 100mm x 25mm sterile petri dish | VWR International | 89107-632 | |
Polystyrene 150mm x 15mm sterile petri dish | Fisher Scientific | FB08-757-14 | |
Polystyrene 150x15mm sterile petri dish | Fisher Scientific | 08-757-148 | |
Pure Bright Germicidal Ultra Bleach 5.7% Available Chlorine (defined as 100% bleach) | Staples | 1013131 | |
Rifampicin | Gold Biotechnology | R-120-25 | |
Silwet L-77 (non-ionic organosilicone surfactant co-polymer C13H34O4Si3 surfactant) | Fisher Scientific | NCO138454 | |
Tips LTS 20 μL 960/10 GPS-L10 | Rainin | 17005091 | |
Tips LTS 250 μL 960/10 GPS-L250 | Rainin | 17005093 | |
VWR dissecting forceps fine tip, 4.5" | VWR International | 82027-386 |
Access restricted. Please log in or start a trial to view this content.
An erratum was issued for: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay. The Introduction, Protocol, Representative Results and Discussion sections were updated.
The last paragraph of the Introduction section was updated from:
In the seedling flood assay described in this protocol, tomato seedlings are grown on Petri dishes of sterile Murashige and Skoog (MS) media for 10 days and then are flooded with an inoculum containing the bacteria of interest and a surfactant. Following flooding, seedlings can be quantitatively evaluated for disease resistance via bacterial growth assays. Additionally, seedling survival or death can act as a discrete resistance or disease phenotype 7–14 days after flooding. This approach offers a high-throughput alternative for screening large numbers of wild tomato accessions for resistance to Pst race 1 strains, such as Pst strain T1 (PstT1), and can easily be adapted to other bacterial strains of interest.
to:
In the seedling flood assay described in this protocol, tomato seedlings are grown on Petri dishes of sterile Murashige and Skoog (MS) media for 10 days and then are flooded with an inoculum containing the bacteria of interest and a surfactant. Following flooding, seedlings can be quantitatively evaluated for disease resistance via bacterial growth assays. Additionally, seedling survival or death can act as a discrete resistance or disease phenotype 7–14 days after flooding. This approach offers a high-throughput alternative for screening large numbers of wild tomato accessions for resistance to Pst race 1 strains, such as Pst strain 19 (Pst19), and can easily be adapted to other bacterial strains of interest.
Step 4.8 of the Protocol section was updated from:
to:
Step 5.2 of the Protocol section was updated from:
to:
Step 5.6 of the Protocol section was updated from:
to:
Step 6 of the Protocol section was updated from:
6. Preparation of PstT1 inoculum
to
6. Preparation of Pst19 inoculum
Step 6.2 of the Protocol section was updated from:
to:
Step 6.3 of the Protocol section was updated from:
to:
Step 8.3 of the Protocol section was updated from:
to:
Step 8.11 of the Protocol section was updated from:
to:
Step 10.7 of the Protocol section was updated from:
Genotype1 Column A | Tissue Weight (g) Column B | # of Colonies in a spot Column C | Dilution factor for spot2 Column D | Adjusted # of Colonies3 Column E | Dilution factor for serial dilution Column F | Total # of Colonies Column G (cfu/0.01 g)4 | Average # of Colonies (cfu/0.01 g) Column H | Average Log Growth (cfu/0.01 g (log10)) Column I |
Sample 1 | 0.004 g | 10 | 200 | calculated as: (C2 x 0.01 g) / B2 = 25 | 1000 | calculated as: (D2 x E2 x F2) = 5000000 | average for sample 1 through last sample: (ie. average G1:G3) = 7000000 | log of average ie. log(H2) = 6.85 |
Sample 2 | 0.003 g | 15 | 200 | 50 | 1000 | 10000000 | ||
Sample 3 | 0.002 g | 6 | 200 | 30 | 1000 | 6000000 | ||
1Data shown for 3 samples | ||||||||
2Based on plating 5 µL x 200 for 1 mL | ||||||||
3Cotyledons are too small to core so colony counts were normalized to 0.01 g of tissue based on the average mass of one MoneyMaker-PtoS cotyledon (data not shown) | ||||||||
4Adjusted per mL based on volume plated |
Table 1: Sample calculations for seedling bacterial growth assay. Sample calculations demonstrate how to normalize bacterial counts and determine log bacterial growth.
to:
Genotype1 Column A | Tissue Weight (g) Column B | # of Colonies in a spot Column C | Dilution factor for spot2 Column D | Adjusted # of Colonies3 Column E | Dilution factor for serial dilution Column F | Total # of Colonies Column G (cfu/0.01 g)4 | Average # of Colonies (cfu/0.01 g) Column H | Average Log Growth (cfu/0.1 g (log10)) Column I |
Sample 1 | 0.04 g | 10 | 200 | calculated as: (C2 x 0.1 g) / B2 = 25 | 1000 | calculated as: (D2 x E2 x F2) = 5000000 | average for sample 1 through last sample: (ie. average G1:G3) = 7000000 | log of average ie. log(H2) = 6.85 |
Sample 2 | 0.03 g | 15 | 200 | 50 | 1000 | 10000000 | ||
Sample 3 | 0.02 g | 6 | 200 | 30 | 1000 | 6000000 | ||
1Data shown for 3 samples | ||||||||
2Based on plating 5 µL x 200 for 1 mL | ||||||||
3Cotyledons are too small to core so colony counts were normalized to 0.1 g of tissue based on the average mass of one MoneyMaker-PtoS cotyledon (data not shown) | ||||||||
4Adjusted per mL based on volume plated |
Table 1: Sample calculations for seedling bacterial growth assay. Sample calculations demonstrate how to normalize bacterial counts and determine log bacterial growth.
Step 11.3 of the Protocol section was updated from:
to:
Figure 4 in the Protocol section was updated from:
Figure 4: Schematic representation of expected phenotypes for seedling resistance and death in various genetic backgrounds. (A) Seedlings of Rio Grande-PtoR and the near-isogenic cultivar Rio Grande-PtoS are displayed 7 days after flooding with PstDC3000 (OD600 = 0.005) + 0.015% surfactant. Rio Grande-PtoR displays consistent resistance, and Rio Grande-PtoS displays consistent susceptibility to infection with PstDC3000. These lines give rise to discrete and binary phenotypes. (B) Seedlings of a wild accession, such as Solanum neorickii LA1329, are shown 10 days after flooding with PstT1 (OD600 = 0.0075) + 0.015% surfactant. Seedlings display phenotypic variability but were recorded as binary phenotypes. The amount of phenotypic variability and the method of phenotyping (binary resistance or resistance spectrum) will depend on the particular accession tested. (C) Mapping populations generated by outcrossing wild accessions to susceptible cultivars may display a wider spectrum of phenotypes in F2 segregating populations. In this case, it may be most appropriate to record seedling phenotypes on a spectrum. Highly susceptible seedlings from a mapping population may be phenotyped for death as early as day 7 when flooded with PstT1, and typically show a brown apical meristem, no to very little extension of the epicotyl, and no new, green vegetative growth. The apical meristem of susceptible seedlings may stay green or very light brown for more time, and there may be some extension of the epicotyl and very little vegetative growth, which turns brown and arrests by day 10. Individual seedlings can be phenotyped for resistance based on the amount of new and ongoing vegetative growth by day 14. Seedlings can then be grouped based on the phenotypes described above into different categories of resistance such as weak, medium, or strong resistance. Please click here to view a larger version of this figure.
to:
Figure 4: Schematic representation of expected phenotypes for seedling resistance and death in various genetic backgrounds. (A) Seedlings of Rio Grande-PtoR and the near-isogenic cultivar Rio Grande-PtoS are displayed 7 days after flooding with PstDC3000 (OD600 = 0.005) + 0.015% surfactant. Rio Grande-PtoR displays consistent resistance, and Rio Grande-PtoS displays consistent susceptibility to infection with PstDC3000. These lines give rise to discrete and binary phenotypes. (B) Seedlings of a wild accession, such as Solanum neorickii LA1329, are shown 10 days after flooding with Pst19 (OD600 = 0.0075) + 0.015% surfactant. Seedlings display phenotypic variability but were recorded as binary phenotypes. The amount of phenotypic variability and the method of phenotyping (binary resistance or resistance spectrum) will depend on the particular accession tested. (C) Mapping populations generated by outcrossing wild accessions to susceptible cultivars may display a wider spectrum of phenotypes in F2 segregating populations. In this case, it may be most appropriate to record seedling phenotypes on a spectrum. Highly susceptible seedlings from a mapping population may be phenotyped for death as early as day 7 when flooded with Pst19, and typically show a brown apical meristem, no to very little extension of the epicotyl, and no new, green vegetative growth. The apical meristem of susceptible seedlings may stay green or very light brown for more time, and there may be some extension of the epicotyl and very little vegetative growth, which turns brown and arrests by day 10. Individual seedlings can be phenotyped for resistance based on the amount of new and ongoing vegetative growth by day 14. Seedlings can then be grouped based on the phenotypes described above into different categories of resistance such as weak, medium, or strong resistance. Please click here to view a larger version of this figure.
The second paragraph of the Representative Results section was updated from:
Phenotypic screening of wild accessions using the seedling resistance assay
Figure 6 shows representative results for seedlings of susceptible and resistant accessions 10–14 days after flooding with PstT1. Susceptible accessions include RG-PtoR, S. pimpinellifolium LA1375, and S. pimpinellifolium LA1606, and resistant accessions include S. neorickii LA1329. Ten-day-old seedlings were flooded with 10 mM MgCl2 + 0.015% surfactant as a negative control, and PstT1 at an optical density of 0.0075 + 0.015% surfactant. The seedlings were phenotyped at least 10 days after flooding, as PstT1-infected seedlings died more slowly than PstDC3000-infected seedlings. Mock-inoculated seedlings were green, healthy, and actively growing. This control is important to ensure that the accessions are not sensitive to the concentration of surfactant, and to ensure there is no bacterial contamination. Susceptible accessions (Rio Grande-PtoR [n = 7], S. pimpinellifolium LA1375 [n = 7], and S. pimpinellifolium LA1606 [n = 5]) were dead, had brown apical meristems, and lacked new growth 10–14 days after inoculation with PstT1. In contrast, two S. neorickii LA1329 (n = 3) seedlings displayed a high level of new, green growth and survived infection with PstT1 (Figure 6). Three LA1329 seedlings did not germinate. Typically, 5–7 individuals were screened for each accession in a primary screen to determine the prevalence of resistance in the population. When a more genetically complex wild accession, such as LA1329, is flooded with PstT1, the resistance phenotypes display slightly more variability among individual seedlings, compared to Moneymaker-PtoR treated with PstDC3000. However, the resistance phenotypes were usually less variable than those seen in F2 mapping populations. Thus, binary phenotyping criteria was used for LA1329.
to:
Phenotypic screening of wild accessions using the seedling resistance assay
Figure 6 shows representative results for seedlings of susceptible and resistant accessions 10–14 days after flooding with Pst19. Susceptible accessions include RG-PtoR, S. pimpinellifolium LA1375, and S. pimpinellifolium LA1606, and resistant accessions include S. neorickii LA1329. Ten-day-old seedlings were flooded with 10 mM MgCl2 + 0.015% surfactant as a negative control, and Pst19 at an optical density of 0.0075 + 0.015% surfactant. The seedlings were phenotyped at least 10 days after flooding, as Pst19-infected seedlings died more slowly than PstDC3000-infected seedlings. Mock-inoculated seedlings were green, healthy, and actively growing. This control is important to ensure that the accessions are not sensitive to the concentration of surfactant, and to ensure there is no bacterial contamination. Susceptible accessions (Rio Grande-PtoR [n = 7], S. pimpinellifolium LA1375 [n = 7], and S. pimpinellifolium LA1606 [n = 5]) were dead, had brown apical meristems, and lacked new growth 10–14 days after inoculation with Pst19. In contrast, two S. neorickii LA1329 (n = 3) seedlings displayed a high level of new, green growth and survived infection with Pst19 (Figure 6). Three LA1329 seedlings did not germinate. Typically, 5–7 individuals were screened for each accession in a primary screen to determine the prevalence of resistance in the population. When a more genetically complex wild accession, such as LA1329, is flooded with Pst19, the resistance phenotypes display slightly more variability among individual seedlings, compared to Moneymaker-PtoR treated with PstDC3000. However, the resistance phenotypes were usually less variable than those seen in F2 mapping populations. Thus, binary phenotyping criteria was used for LA1329.
Figure 6 in the Representative Results section was updated from:
Figure 6: Phenotypic characterization of resistance or disease symptoms 10–14 days post-infection in wild accessions. Rio Grande-PtoR, S. pimpinellifolium LA1606, S. pimpinellifolium LA1375 and S. neorickii LA1329 tomato seedlings were grown on 0.5x MS plates for 10 days, and then flooded with PstT1 (OD600 = 0.0075) + 0.015% surfactant. The number of surviving seedlings for each wild accession out of the total number tested is shown. Scale bar = 1 cm. Please click here to view a larger version of this figure.
to:
Figure 6: Phenotypic characterization of resistance or disease symptoms 10–14 days post-infection in wild accessions. Rio Grande-PtoR, S. pimpinellifolium LA1606, S. pimpinellifolium LA1375 and S. neorickii LA1329 tomato seedlings were grown on 0.5x MS plates for 10 days, and then flooded with Pst19 (OD600 = 0.0075) + 0.015% surfactant. The number of surviving seedlings for each wild accession out of the total number tested is shown. Scale bar = 1 cm. Please click here to view a larger version of this figure.
The third paragraph of the Representative Results section was updated from:
Quantitative assessment of bacterial growth using the seedling flood assay
To confirm that the observed resistance in LA1329 to PstT1 resulted in lower bacterial growth, bacterial growth assays were carried out in tomato seedlings. The level of PstT1 growth in Moneymaker-PtoS and S. neorickii LA1329 was determined 4 days post-infection. Moneymaker-PtoS is a near-isogenic line with consistent susceptibility among individual seedlings. Wild accessions such as S. neorickii LA1329 are often more genetically complex. LA1329 displays approximately 60% resistance to PstT1 across the population22. Because seedlings may drop their cotyledons after infection, one seedling was grown on each plate to correlate bacterial growth in the harvested cotyledon with overall seedling survival or death as determined phenotypically at least 10 days after flooding. The bacterial counts on day 4 for each seedling were normalized to 0.01 g of tissue and converted to log growth (CFU/0.01 g(log10)). Log growth for phenotypically resistant LA1329 seedlings (LA1329RES) or phenotypically susceptible seedlings (LA1329SUS) were separately pooled and compared to each other and the susceptible cultivar Moneymaker-PtoS. For example, there was a 1.7 log difference in bacterial growth between LA1329RES (log 6.3) and LA1329SUS (log 8.0), and a 1.6 log difference between LA1329RES (log 6.3) and Moneymaker-PtoS (log 7.9) (Figure 7). Therefore, phenotypic resistance correlated with quantitative resistance in the seedling assays.
to:
Quantitative assessment of bacterial growth using the seedling flood assay
To confirm that the observed resistance in LA1329 to Pst19 resulted in lower bacterial growth, bacterial growth assays were carried out in tomato seedlings. The level of Pst19 growth in Moneymaker-PtoS and S. neorickii LA1329 was determined 4 days post-infection. Moneymaker-PtoS is a near-isogenic line with consistent susceptibility among individual seedlings. Wild accessions such as S. neorickii LA1329 are often more genetically complex. LA1329 displays approximately 60% resistance to Pst19 across the population22. Because seedlings may drop their cotyledons after infection, one seedling was grown on each plate to correlate bacterial growth in the harvested cotyledon with overall seedling survival or death as determined phenotypically at least 10 days after flooding. The bacterial counts on day 4 for each seedling were normalized to 0.01 g of tissue and converted to log growth (CFU/0.01 g(log10)). Log growth for phenotypically resistant LA1329 seedlings (LA1329RES) or phenotypically susceptible seedlings (LA1329SUS) were separately pooled and compared to each other and the susceptible cultivar Moneymaker-PtoS. For example, there was a 1.7 log difference in bacterial growth between LA1329RES (log 6.3) and LA1329SUS (log 8.0), and a 1.6 log difference between LA1329RES (log 6.3) and Moneymaker-PtoS (log 7.9) (Figure 7). Therefore, phenotypic resistance correlated with quantitative resistance in the seedling assays.
Figure 7 in the Representative Results section was updated from:
x
Figure 7: Resistant Solanum neorickii LA1329 seedlings support lower bacterial growth than Moneymaker-PtoS or susceptible S. neorickii LA1329. Bacterial counts were determined 4 days post-inoculation from S. neorickii LA1329 (n = 14) and Moneymaker-PtoS (n = 10) seedlings infected with PstT1 and normalization was performed to 0.01 g of tissue. For LA1329, the two phenotypic groups, susceptible (SUS) or resistant (RES), were observed and counted separately. Above the bar * = statistically significant difference determined by a one-factor analysis of variance. A general linear model procedure (p < 0.001) followed by a multiple comparison of means using Tukey's post hoc test was used. Error bars = standard error. The figure indicates one representative experiment. Please click here to view a larger version of this figure.
x
Figure 7: Resistant Solanum neorickii LA1329 seedlings support lower bacterial growth than Moneymaker-PtoS or susceptible S. neorickii LA1329. Bacterial counts were determined 4 days post-inoculation from S. neorickii LA1329 (n = 14) and Moneymaker-PtoS (n = 10) seedlings infected with Pst19 and normalization was performed to 0.1 g of tissue. For LA1329, the two phenotypic groups, susceptible (SUS) or resistant (RES), were observed and counted separately. Above the bar * = statistically significant difference determined by a one-factor analysis of variance. A general linear model procedure (p < 0.001) followed by a multiple comparison of means using Tukey's post hoc test was used. Error bars = standard error. The figure indicates one representative experiment. Please click here to view a larger version of this figure.
The first paragraph of the Discussion section was updated from:
A protocol for flood inoculation with PstDC3000 or PstT1 optimized to detect resistance to these bacterial strains in tomato seedlings is described. There are several critical parameters for optimal results in the seedling resistance assay, including bacterial concentration and surfactant concentration, which were empirically determined22. For PstDC3000, the optical density was optimized to achieve complete survival on a resistant cultivar containing the Pto/Prf cluster and complete death on a susceptible cultivar lacking the Pto/Prf cluster22. For a strain such as PstT1, where there are no known resistant varieties, the optical density was optimized to be the lowest possible for consistent and complete plant death22. Uppalapati et al.24 designed a tomato seedling assay to investigate the pathogenesis of PstDC3000 and the virulence function of coronatine. In this virulence assay, infections were performed using bacteria concentrated to an OD600 of 0.124, 20x higher than the optical density of strains used in our resistance assay. Recognition of PstDC3000 effectors AvrPto and AvrPtoB in tomato seedlings carrying the Pto/Prf gene cluster results in ETI and a macroscopic HR22. In the context of a strong immune response such as ETI, a lower bacterial titer was used for PstDC3000 to avoid overwhelming genetic resistance from the Pto/Prf gene cluster22. In addition, these results suggest that a high bacterial concentration could overwhelm weaker immune responses such as PTI or quantitative partial resistance, where multiple genes contribute to the overall phenotype. Surfactant is necessary for the bacteria to adhere to the leaf surface; however, high concentrations can cause chlorosis of the leaf22. We previously tested a range of surfactant concentrations to empirically determine the ideal concentration in 10-day-old tomato seedlings22. When testing new species that may differ in their sensitivity to surfactant, the surfactant concentration should be optimized to identify a concentration that does not cause damage or chlorosis in the absence of bacteria. Appropriate assay conditions will require optimization of a surfactant concentration that does not cause damage, and a bacterial concentration that causes disease in all susceptible controls.
to:
A protocol for flood inoculation with PstDC3000 or Pst19 optimized to detect resistance to these bacterial strains in tomato seedlings is described. There are several critical parameters for optimal results in the seedling resistance assay, including bacterial concentration and surfactant concentration, which were empirically determined22. For PstDC3000, the optical density was optimized to achieve complete survival on a resistant cultivar containing the Pto/Prf cluster and complete death on a susceptible cultivar lacking the Pto/Prf cluster22. For a strain such as Pst19, where there are no known resistant varieties, the optical density was optimized to be the lowest possible for consistent and complete plant death22. Uppalapati et al.24 designed a tomato seedling assay to investigate the pathogenesis of PstDC3000 and the virulence function of coronatine. In this virulence assay, infections were performed using bacteria concentrated to an OD600 of 0.124, 20x higher than the optical density of strains used in our resistance assay. Recognition of PstDC3000 effectors AvrPto and AvrPtoB in tomato seedlings carrying the Pto/Prf gene cluster results in ETI and a macroscopic HR22. In the context of a strong immune response such as ETI, a lower bacterial titer was used for PstDC3000 to avoid overwhelming genetic resistance from the Pto/Prf gene cluster22. In addition, these results suggest that a high bacterial concentration could overwhelm weaker immune responses such as PTI or quantitative partial resistance, where multiple genes contribute to the overall phenotype. Surfactant is necessary for the bacteria to adhere to the leaf surface; however, high concentrations can cause chlorosis of the leaf22. We previously tested a range of surfactant concentrations to empirically determine the ideal concentration in 10-day-old tomato seedlings22. When testing new species that may differ in their sensitivity to surfactant, the surfactant concentration should be optimized to identify a concentration that does not cause damage or chlorosis in the absence of bacteria. Appropriate assay conditions will require optimization of a surfactant concentration that does not cause damage, and a bacterial concentration that causes disease in all susceptible controls.
The third paragraph of the Discussion section was updated from:
Pst is a foliar pathogen that preferentially colonizes the aerial parts of tomato seedlings, including the cotyledons24 (Figure 3). Therefore, qualitative phenotyping in the seedling flood assay focuses on growth and disease symptoms in aerial portions of the seedling, and tissue for the bacterial growth assay is sampled from the cotyledons for quantitative analysis. After flood inoculation, seedlings may die within 7–10 days after inoculation with PstDC3000 or 10–14 days after inoculation with PstT1, as discussed in section 11. Seedling death is visualized by a brown apical meristem, arrested epicotyl elongation, and/or arrested vegetative growth. If different bacterial strains are used, the timing will have to be empirically determined. In addition, the progression of disease on control plants should be monitored daily after flooding until a consistent time frame from the onset of disease symptoms to seedling death can be identified. Depending on the genotypes and treatments used in the flood assay, seedling phenotypes can be recorded as binary phenotypes or on a disease spectrum (Figure 4). A broader spectrum of phenotypes may be observed when flood inoculating F2 mapping populations from wild tomato accessions crossed to susceptible cultivars (Figure 4C). It may be best to phenotype segregating populations on a disease spectrum depending on how quickly the seedling dies and the degree of new vegetative growth and branching (Figure 4C). The seedling flood assay can also be used in conjunction with the seedling bacterial growth assay to quantitatively assess levels of bacterial growth associated with qualitative phenotypes in individual seedlings (Figure 7). Very large reductions (i.e., ~log 3) in bacterial growth or strong resistance in resistant seedlings of a wild accession compared to a susceptible cultivar suggest that the underlying genetic basis of resistance may be due to ETI22. Smaller reductions in bacterial growth (i.e., ~log 1.7), as observed in LA1329 seedlings, may be due to the contribution of weaker resistance from quantitative trait loci and/or PTI. Thus, the seedling growth assay can be an important tool in further characterizing resistance in wild tomato lines.
to:
Pst is a foliar pathogen that preferentially colonizes the aerial parts of tomato seedlings, including the cotyledons24 (Figure 3). Therefore, qualitative phenotyping in the seedling flood assay focuses on growth and disease symptoms in aerial portions of the seedling, and tissue for the bacterial growth assay is sampled from the cotyledons for quantitative analysis. After flood inoculation, seedlings may die within 7–10 days after inoculation with PstDC3000 or 10–14 days after inoculation with Pst19, as discussed in section 11. Seedling death is visualized by a brown apical meristem, arrested epicotyl elongation, and/or arrested vegetative growth. If different bacterial strains are used, the timing will have to be empirically determined. In addition, the progression of disease on control plants should be monitored daily after flooding until a consistent time frame from the onset of disease symptoms to seedling death can be identified. Depending on the genotypes and treatments used in the flood assay, seedling phenotypes can be recorded as binary phenotypes or on a disease spectrum (Figure 4). A broader spectrum of phenotypes may be observed when flood inoculating F2 mapping populations from wild tomato accessions crossed to susceptible cultivars (Figure 4C). It may be best to phenotype segregating populations on a disease spectrum depending on how quickly the seedling dies and the degree of new vegetative growth and branching (Figure 4C). The seedling flood assay can also be used in conjunction with the seedling bacterial growth assay to quantitatively assess levels of bacterial growth associated with qualitative phenotypes in individual seedlings (Figure 7). Very large reductions (i.e., ~log 3) in bacterial growth or strong resistance in resistant seedlings of a wild accession compared to a susceptible cultivar suggest that the underlying genetic basis of resistance may be due to ETI22. Smaller reductions in bacterial growth (i.e., ~log 1.7), as observed in LA1329 seedlings, may be due to the contribution of weaker resistance from quantitative trait loci and/or PTI. Thus, the seedling growth assay can be an important tool in further characterizing resistance in wild tomato lines.
The fourth paragraph of the Discussion section was updated from:
Typically, genetic screens have been performed on four- to five-week-old adult tomato plants to identify the genetic basis of P. syringae resistance in wild accessions20,21. Adult tomato plants require much longer growth times, require more space in the growth chamber, and are much larger plants, which means that usually few individuals are screened for each line. The seedling flood assay provides a powerful, alternative approach in the identification of P. syringae resistance in wild tomato accessions. Screening at the seedling stage permits a large sample size to be tested which can be particularly advantageous in detecting resistance in genetically complex populations. Reduced growth chamber space requirements and growth time facilitate a high-throughput approach and rapid detection of natural resistance in wild accessions to emerging pathogens. Furthermore, P. syringae resistance that was identified at the seedling stage in this assay is not restricted to the developmental stage. S. neorickii LA1329 and S. habrochaites LA1253 were initially identified at the seedling stage and also display resistance to PstT1 in adult plants as previously described22.
to:
Typically, genetic screens have been performed on four- to five-week-old adult tomato plants to identify the genetic basis of P. syringae resistance in wild accessions20,21. Adult tomato plants require much longer growth times, require more space in the growth chamber, and are much larger plants, which means that usually few individuals are screened for each line. The seedling flood assay provides a powerful, alternative approach in the identification of P. syringae resistance in wild tomato accessions. Screening at the seedling stage permits a large sample size to be tested which can be particularly advantageous in detecting resistance in genetically complex populations. Reduced growth chamber space requirements and growth time facilitate a high-throughput approach and rapid detection of natural resistance in wild accessions to emerging pathogens. Furthermore, P. syringae resistance that was identified at the seedling stage in this assay is not restricted to the developmental stage. S. neorickii LA1329 and S. habrochaites LA1253 were initially identified at the seedling stage and also display resistance to Pst19 in adult plants as previously described22.
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon