A subscription to JoVE is required to view this content. Sign in or start your free trial.
The seedling flood assay facilitates rapid screening of wild tomato accessions for the resistance to the Pseudomonas syringae bacterium. This assay, used in conjunction with the seedling bacterial growth assay, can assist in further characterizing the underlying resistance to the bacterium, and can be used to screen mapping populations to determine the genetic basis of resistance.
Tomato is an agronomically important crop that can be infected by Pseudomonas syringae, a Gram-negative bacterium, resulting in bacterial speck disease. The tomato-P. syringae pv. tomato pathosystem is widely used to dissect the genetic basis of plant innate responses and disease resistance. While disease was successfully managed for many decades through the introduction of the Pto/Prf gene cluster from Solanum pimpinellifolium into cultivated tomato, race 1 strains of P. syringae have evolved to overcome resistance conferred by the Pto/Prf gene cluster and occur worldwide.
Wild tomato species are important reservoirs of natural diversity in pathogen recognition, because they evolved in diverse environments with different pathogen pressures. In typical screens for disease resistance in wild tomato, adult plants are used, which can limit the number of plants that can be screened due to their extended growth time and greater growth space requirements. We developed a method to screen 10-day-old tomato seedlings for resistance, which minimizes plant growth time and growth chamber space, allows a rapid turnover of plants, and allows large sample sizes to be tested. Seedling outcomes of survival or death can be treated as discrete phenotypes or on a resistance scale defined by amount of new growth in surviving seedlings after flooding. This method has been optimized to screen 10-day-old tomato seedlings for resistance to two P. syringae strains and can easily be adapted to other P. syringae strains.
Pseudomonas syringae is a Gram-negative pathogenic bacterium that infects a wide range of plant hosts. Bacteria enter the host plant through the stomata or physical wounds and proliferate in the apoplast1. Plants have evolved a two-tiered immune response to protect against infection by bacterial pathogens. The first level occurs at the plant cell surface, where pattern recognition receptors on the plant cell membrane perceive highly conserved pathogen-associated molecular patterns (PAMPs) in a process called PAMP-triggered immunity (PTI)2. During this process, the host plant upregulates defense response pathways....
1. Preparation and use of biosafety cabinet
Detection of PtoR-mediated immunity in cultivars and isogenic lines using the seedling resistance assay
Figure 5 shows representative results for Moneymaker-PtoR and Moneymaker-PtoS cultivars 7–10 days after flooding with PstDC3000. Prior to infection, 10-day-old seedlings displayed fully emerged and expanded cotyledons and emerging first true leaves. The seedlings were flooded with 10 mM MgCl2 + 0.015% surfactant as.......
A protocol for flood inoculation with PstDC3000 or Pst19 optimized to detect resistance to these bacterial strains in tomato seedlings is described. There are several critical parameters for optimal results in the seedling resistance assay, including bacterial concentration and surfactant concentration, which were empirically determined22. For PstDC3000, the optical density was optimized to achieve complete survival on a resistant cultivar containing the Pto/Prf.......
We thank Jamie Calma for testing the effect of media volume on disease or resistance outcomes. We thank Dr. Maël Baudin and Dr. Karl J. Scheiber from the Lewis Lab for providing constructive comments and suggestions on the manuscript. Research on plant immunity in the Lewis laboratory was supported by the USDA ARS 2030-21000-046-00D and 2030-21000-050-00D (JDL), and the NSF Directorate for Biological Sciences IOS-1557661 (JDL).
....Name | Company | Catalog Number | Comments |
3M Tape Micropore 1/2" x 10 YD CS 240 (1.25 cm x 9.1 m) | VWR International | 56222-182 | |
3mm borosilicate glass beads | Friedrich & Dimmock | GB3000B | |
Bacto peptone | BD | 211677 | |
Bacto agar | BD | 214010 | |
Biophotometer Plus | Eppendorf | E952000006 | |
Biosafety cabinet, class II type A2 | |||
BRAND Disposable Plastic Cuvettes, Polystyrene | VWR International | 47744-642 | |
Chenille Kraft Flat Wood Toothpicks | VWR International | 500029-808 | |
cycloheximide | Research Products International | C81040-5.0 | |
Dibasic potassium phosphate anhydrous, ACS grade | Fisher Scientific | P288-500 | |
Dimethylformamide | |||
Dissecting microscope (Magnification of at least 10x) | |||
Ethanol - 190 Proof | |||
Falcon polystyrene 96 well microplates, flat-bottom | Fisher Scientific | 08-772-3 | |
Glass Alcohol Burner Wick | Fisher Scientific | S41898A / No. W-125 | |
Glass Alcohol Burners | Fisher Scientific | S41898 / No. BO125 | |
Glycerol ACS reagent | VWR International | EMGX0185-5 | |
Kimberly-Clark™ Kimtech Science™ Kimwipes™ Delicate Task Wipers | Fisher Scientific | 06-666-A | |
Magnesium chloride, ACS grade | VWR International | 97061-356 | |
Magnesium sulfate heptahydrate, ACS grade | VWR International | 97062-130 | |
Microcentrifuge tubes, 1.5 mL | |||
Microcentrifuge tubes, 2.2 mL | |||
Mini Beadbeater-96, 115 volt | Bio Spec Products Inc. | 1001 | |
Murashige & Skoog, Basal Salts | Caisson Laboratories, Inc. | MSP01-50LT | |
Pipet-Lite XLS LTS 8-CH Pipet 20-200uL | Rainin | L8-200XLS | |
Pipet-Lite XLS LTS 8-CH Pipet 2-20uL | Rainin | L8-20XLS | |
Polystyrene 100mm x 25mm sterile petri dish | VWR International | 89107-632 | |
Polystyrene 150mm x 15mm sterile petri dish | Fisher Scientific | FB08-757-14 | |
Polystyrene 150x15mm sterile petri dish | Fisher Scientific | 08-757-148 | |
Pure Bright Germicidal Ultra Bleach 5.7% Available Chlorine (defined as 100% bleach) | Staples | 1013131 | |
Rifampicin | Gold Biotechnology | R-120-25 | |
Silwet L-77 (non-ionic organosilicone surfactant co-polymer C13H34O4Si3 surfactant) | Fisher Scientific | NCO138454 | |
Tips LTS 20 μL 960/10 GPS-L10 | Rainin | 17005091 | |
Tips LTS 250 μL 960/10 GPS-L250 | Rainin | 17005093 | |
VWR dissecting forceps fine tip, 4.5" | VWR International | 82027-386 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved