È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.
Method Article
Il saggio sull'alluvione delle piantine facilita lo screening rapido delle adesioni di pomodoro selvatico per la resistenza al batterio delle siringhe Pseudomonas. Questo test, utilizzato in combinazione con il test della crescita batterica delle piantine, può aiutare a caratterizzare ulteriormente la resistenza sottostante al batterio e può essere utilizzato per lo screening delle popolazioni di mappatura per determinare la base genetica della resistenza.
Il pomodoro è una coltura agronomicamente importante che può essere infettata da Pseudomonas siringae, un batterio Gram-negativo, con conseguente malattia del speck batterico. Il pomodoroP. siringa e pv. il sistema di patosistema del pomodoro è ampiamente usato per sezionare la base genetica delle risposte innate delle piante e della resistenza alle malattie. Mentre la malattia è stata gestita con successo per molti decenni attraverso l'introduzione del cluster genico Pto/Prf dal pimpinellifolium di Solanum al pomodoro coltivato, i ceppi di razza 1 di P. siringae si sono evoluti per superare la resistenza conferita dal cluster genico Pto/Prf e si verificano in tutto il mondo.
Le specie di pomodoro selvatico sono importanti serbatoi di diversità naturale nel riconoscimento dei patogeni, perché si sono evoluti in ambienti diversi con diverse pressioni dei patogeni. Negli schermi tipici per la resistenza alle malattie nel pomodoro selvatico, vengono utilizzate piante adulte, che possono limitare il numero di piante che possono essere sottoposte a screening a causa del loro tempo di crescita prolungato e dei maggiori requisiti di spazio di crescita. Abbiamo sviluppato un metodo per vagliare le piantine di pomodoro vecchie di 10 giorni per la resistenza, che riduce al minimo il tempo di crescita delle piante e lo spazio della camera di crescita, consente un rapido ricambio delle piante e consente di testare grandi dimensioni del campione. Gli esiti delle piantine di sopravvivenza o di morte possono essere trattati come fenotipi discreti o su una scala di resistenza definita dalla quantità di nuova crescita nelle piantine sopravvissute dopo l'inondazione. Questo metodo è stato ottimizzato per lo screening di piantine di pomodoro vecchie di 10 giorni per la resistenza a due ceppi di siringhe P. e può essere facilmente adattato ad altri ceppi di siringhe P.
Pseudomonas syringae è un batterio patogeno Gram-negativo che infetta una vasta gamma di ospiti vegetali. I batteri entrano nella pianta ospite attraverso gli stomi o le ferite fisiche e proliferano nell'apoplasta1. Le piante hanno sviluppato una risposta immunitaria a due livelli per proteggersi dalle infezioni da agenti patogeni batterici. Il primo livello si verifica sulla superficie delle cellule vegetali, dove i recettori di riconoscimento dei pattern sulla membrana cellulare vegetale percepiscono modelli molecolari associati a i patogeni altamente conservati (PPAM) in un processo chiamato immunità innescata da PAMP (PTI)2. Durante questo processo, la pianta ospite upregulate i percorsi di risposta della difesa, tra cui la deposizione di callosi alla parete cellulare, la chiusura degli stomi, la produzione di specie reattive dell'ossigeno e l'induzione di geni patogeni-correlati.
I batteri possono superare la PTI utilizzando un sistema di secrezione di tipo III per fornire proteine, chiamate efcontadini, direttamente nella cellula vegetale3. Le proteine acchettori sono comunemente destinate ai componenti della PTI e promuovono la virulenza patogena4. Il secondo livello di immunità vegetale si verifica all'interno della cellula vegetale dopo il riconoscimento delle proteine eftraificatori. Questo riconoscimento dipende dai geni di resistenza, che codificano il sito legante nucleotide che contiene i recettori (NLR). Gli NLR sono in grado di riconoscere direttamente gli eftori o di riconoscere la loro attività su un bersaglio di virulenza o esca5. Quindi innescano una risposta immunitaria secondaria in un processo chiamato immunità attivata dagli effetti (ETI), che è spesso associata a una risposta ipersensibile (HR), una forma di morte localizzata delle cellule nel sito di infezione6. A differenza della resistenza gene-per-gene associata all'ETI, le piante possono presentare una resistenza quantitativa parziale, che dipende dal contributo di più geni7.
P. syringae pv. pomodoro (Pst) è l'agente causale di speck batterico sul pomodoro ed è un problema agricolo persistente. ceppi predominanti nel campo sono stati tipicamente Pst gara 0 ceppi che esprimono uno o entrambi gli effetti di tipo III AvrPto e AvrPtoB. DC3000 (PstDC3000) è un ceppo di razza 0 rappresentativo e un patogeno modello che può causare speck batterico nel pomodoro. Per combattere la malattia del cela batterico, gli allevatori hanno introretto il Pto [P. syringae pv. tomato]/Prf [ Resistenza al piatto e sensibilità alfenthion] cluster genico della specie di pomodoro selvatico Solanum pimpinellifolium nelle moderne cultivar8,9. Il gene Pto codifica una chinasi della proteina serine-threonine che, insieme alla Prf NLR, conferisce resistenza a PstDC3000 attraverso il riconoscimento degli effetti AvrPto e AvrPtoB10,11,12,13,14. Tuttavia, questa resistenza è inefficace contro le ceppi emergenti di gara 1, consentendo la loro rapida e aggressiva diffusione negli ultimi anni15,16. Gara 1 sforza eludere il riconoscimento da parte del cluster Pto / Prf, perché AvrPto è o perso o mutato in questi ceppi, e AvrPtoB sembra accumulare almeno15,17,18.
Le popolazioni di pomodori selvatici sono importanti serbatoi di variazione naturale per la resistenza Pst e sono stati precedentemente utilizzati per identificare i loci di resistenza potenziale19,20,21. Tuttavia, gli schermi attuali per la resistenza agli agenti patogeni utilizzano piante adulte di 4-5 settimane20,21. Pertanto, sono limitati dal tempo di crescita, spazio camera di crescita, e dimensioni del campione relativamente piccole. Per affrontare i limiti degli approcci convenzionali, abbiamo sviluppato un saggio di resistenza al pomodoro P. siringa ad alto contenuto di velocità utilizzando piantine di pomodoro di 10 giorni22. Questo approccio offre diversi vantaggi rispetto all'utilizzo di piante per adulti: vale a dire, tempi di crescita più brevi, requisiti di spazio ridotti e maggiore produttività. Inoltre, abbiamo dimostrato che questo approccio ricapitola fedelmente i fenotipi di resistenza alle malattie osservati nelle piante adulte22.
Nell'alluvione delle piantine descritta in questo protocollo, le piantine di pomodoro vengono coltivate su piatti Petri di sterili supporti Murashige e Skoog (MS) per 10 giorni e poi vengono inondate da un inoculum contenente i batteri di interesse e un surfactant. In seguito alle inondazioni, le piantine possono essere valutate quantitativamente per la resistenza alle malattie attraverso saggi di crescita batterica. Inoltre, la sopravvivenza delle piantine o la morte possono agire come una resistenza discreta o fenotipo della malattia 7–14 giorni dopo l'inondazione. Questo approccio offre un'alternativa ad alto valore effettiva per lo screening di un gran numero di ascese di pomodoro selvatico per la resistenza ai ceppi Pst race 1, come il ceppo Pst T1 (PstT1), e può essere facilmente adattato ad altri ceppi batterici di interesse.
Access restricted. Please log in or start a trial to view this content.
1. Preparazione e utilizzo del gabinetto di biosicurezza
2. Preparazione dei supporti dell'impianto
3. Preparazione dei materiali vegetali e delle condizioni di crescita
Figura 1: Fase di sviluppo delle tipiche piantine di pomodoro di 10 giorni. I semi di pomodoro Rio Grande -PtoR sono stati sterilizzati, placcati e stratificati per almeno 3 giorni al buio a 4 gradi centigradi. Le piantine sono state coltivate su piastre MS 0,5x per 10 giorni a 22 gradi centigradi prima di essere allagate. Tipicamente, a 10 giorni i cotiledoni sono completamente espansi, e le prime foglie vere stanno cominciando ad emergere. Fare clic qui per visualizzare una versione più grande di questa figura.
4. Preparazione del supporto King's B23 (KB)
5. Manutenzione di ceppi batterici e condizioni di coltura
6. Preparazione del PstT1 inoculum
7. Preparazione di PstDC3000 inoculum
8. Metodo di inondazione di piantine di pomodoro
9. sterilizzazione superficiale dei cotiledoni per il saggio sulla crescita batterica
10. Saggio sulla crescita batterica
Figura 2: Diluizioni seriali per saggi di crescita batterica di piantine. (A) Il tessuto fogliare macerato delle piante infette viene diluito prima del conteggio delle cozze. Le diluizioni vengono eseguite in una piastra di 96 po '(100 non è diluita). Tipicamente, le diluizioni sono fatte da 10-1 a 10-5. (B) Diluizioni di placcatura per i conteggi delle colonie batteriche. Un totale di 5 -L di ogni colonna della serie di diluizione è placcato, dalla più diluita alla più concentrata. Dopo che le colonie si sono completamente asciugate, la piastra viene incubata a 28 gradi centigradi per 36-48 h. Le colonie vengono contate al microscopio 10x di dissetazione. Fare clic qui per visualizzare una versione più grande di questa figura.
Genotipo1 Colonna A | Peso del tessuto (g) Colonna B | N. di colonie in una colonna spot C | Fattore di diluizione per spot2 Colonna D | Regolato il numero di colonie3 Colonna E | Fattore di diluizione per la diluizione seriale Colonna F | Totale n. di Colonie Colonna G (cfu/0.01 g)4 | Media n. di colonie (cfu/0,01 g) Colonna H | Crescita media del registro (cfu/0,01 g (registro10))Colonna I |
Esempio 1 | 0,004 g | 10 | 200 | calcolato come: (C2 x 0,01 g) / B2 | 1000 | calcolato come: (D2 x E2 x F2) | media per il campione da 1 all'ultimo campione: (cioè media G1:G3) - 7000000 | registro della media cioè. log(H2) : 6,85 |
Esempio 2 | 0,003 g | 15 | 200 | 50 | 1000 | 10000000 | ||
Esempio 3 | 0,002 g | 6 | 200 | 30 | 1000 | 6000000 | ||
1 : il nome del Dati mostrati per 3 campioni | ||||||||
2 Il nome del sistema A base di placcatura 5 X X 200 per 1 mL | ||||||||
3 (COM del nome I cotiledoni sono troppo piccoli per il nucleo, quindi i conteggi delle cozze sono stati normalizzati a 0,01 g di tessuto in base alla massa media di un cotileno MoneyMaker-PtoS (dati non mostrati) | ||||||||
4 DEL psu' Regolato per mL in base al volume placcato |
Tabella 1: Esempi di calcoli per il saggio di crescita batterica delle piantine. I calcoli dei campioni illustrano come normalizzare i conteggi batterici e determinare la crescita batterica del log.
11. Fenotipizzazione per resistenza
Figura 3: Rappresentazione schematica di una piantità di pomodoro. Sono raffigurate diverse parti di una piantina di pomodoro, tra cui l'ipocotilo, il cotiledone, l'epicotipo, il meristem apicale e le foglie vere. Fare clic qui per visualizzare una versione più grande di questa figura.
Figura 4: Rappresentazione schematica dei fenotipi attesi per la resistenza e la morte delle piantine in vari contesti genetici. (A) Le piantine del Rio Grande-PtoR e della cultivar quasi isogenica Rio Grande-PtoS sono esposte 7 giorni dopo l'inondazione con il PstDC3000 (OD600 - 0,005) - 0,015% surfactant. Rio Grande-PtoR mostra una resistenza costante, e Rio Grande-PtoS mostra una suscettibilità costante alle infezioni da PstDC3000. Queste linee danno origine a fenotipi discreti e binari. (( B) Le piantine di un'adesione selvaggia, come Solanum neorickii LA1329, sono mostrate 10 giorni dopo l'inondazione con il PstT1 (OD600 - 0,0075) - 0.015% surfactant. Le piantine mostrano la variabilità fenotipica, ma sono state registrate come fenotipi binari. La quantità di variabilità fenotipica e il metodo di fenotipizzazione (spettro binario di resistenza o resistenza) dipenderanno dalla particolare adesione testata. (C) La mappatura delle popolazioni generate dall'attraversamento delle adesioni selvatiche alle cultivar sensibili può mostrare un più ampio spettro di fenotipi nelle popolazioni segreganti di F2. In questo caso, può essere più appropriato registrare i fenotipi delle piantine su uno spettro. Le piantine altamente sensibili di una popolazione di mappatura possono essere fenotidate per la morte già nel giorno 7 quando sono state inondate di PstT1, e in genere mostrano un meristem apicale marrone, non a molto poco eprogno dell'epicotipico, e nessuna nuova crescita vegetativa verde. Il meristem apicale delle piantine sensibili può rimanere verde o molto marrone chiaro per più tempo, e ci può essere qualche estensione della crescita epicotipica e molto poco vegetativa, che diventa marrone e arresta entro il giorno 10. Le piantine individuali possono essere fenotitiche per la resistenza in base alla quantità di crescita vegetativa nuova e in corso entro il giorno 14. Le piantine possono quindi essere raggruppate in base ai fenotipi sopra descritti in diverse categorie di resistenza come la resistenza debole, media o forte. Fare clic qui per visualizzare una versione più grande di questa figura.
Access restricted. Please log in or start a trial to view this content.
Rilevamento dell'immunità mediata da PtoRnelle cultivar e linee isogeniche utilizzando il saggio di resistenza alle piantine
La figura 5 mostra risultati rappresentativi per le cultivar Moneymaker-PtoR e Moneymaker-PtoS 7-10 giorni dopo l'inondazione con PstDC3000. Prima dell'infezione, le piantine di 10 giorni mostravano completamente emerse ed espanse cotiledoni e le prime foglie vere emergenti. Le piantine sono state inondate con 10...
Access restricted. Please log in or start a trial to view this content.
Viene descritto un protocollo per l'inoculazione delle inondazioni con PstDC3000 o PstT1 ottimizzato per rilevare la resistenza a questi ceppi batterici nelle piantine di pomodoro. Ci sono diversi parametri critici per risultati ottimali nel saggio di resistenza alle piantine, tra cui la concentrazione batterica e la concentrazione di surfactant, che sono stati empiricamente determinati22. Per PstDC3000, la densità ottica è stata ottimizzata per ottenere una completa s...
Access restricted. Please log in or start a trial to view this content.
Gli autori non hanno nulla da rivelare.
Ringraziamo Jamie Calma per aver testato l'effetto del volume dei media sui risultati di malattia o resistenza. Ringraziamo il Dr. Maàl Baudin e il Dr. Karl J. Scheiber del Lewis Lab per aver fornito commenti costruttivi e suggerimenti sul manoscritto. La ricerca sull'immunità vegetale nel laboratorio di Lewis è stata sostenuta dall'USDA ARS 2030-21000-046-00D e 2030-21000-050-00D (JDL), e dal direzione delle scienze biologiche IOS-1557661 (JDL).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
3M Tape Micropore 1/2" x 10 YD CS 240 (1.25 cm x 9.1 m) | VWR International | 56222-182 | |
3mm borosilicate glass beads | Friedrich & Dimmock | GB3000B | |
Bacto peptone | BD | 211677 | |
Bacto agar | BD | 214010 | |
Biophotometer Plus | Eppendorf | E952000006 | |
Biosafety cabinet, class II type A2 | |||
BRAND Disposable Plastic Cuvettes, Polystyrene | VWR International | 47744-642 | |
Chenille Kraft Flat Wood Toothpicks | VWR International | 500029-808 | |
cycloheximide | Research Products International | C81040-5.0 | |
Dibasic potassium phosphate anhydrous, ACS grade | Fisher Scientific | P288-500 | |
Dimethylformamide | |||
Dissecting microscope (Magnification of at least 10x) | |||
Ethanol - 190 Proof | |||
Falcon polystyrene 96 well microplates, flat-bottom | Fisher Scientific | 08-772-3 | |
Glass Alcohol Burner Wick | Fisher Scientific | S41898A / No. W-125 | |
Glass Alcohol Burners | Fisher Scientific | S41898 / No. BO125 | |
Glycerol ACS reagent | VWR International | EMGX0185-5 | |
Kimberly-Clark™ Kimtech Science™ Kimwipes™ Delicate Task Wipers | Fisher Scientific | 06-666-A | |
Magnesium chloride, ACS grade | VWR International | 97061-356 | |
Magnesium sulfate heptahydrate, ACS grade | VWR International | 97062-130 | |
Microcentrifuge tubes, 1.5 mL | |||
Microcentrifuge tubes, 2.2 mL | |||
Mini Beadbeater-96, 115 volt | Bio Spec Products Inc. | 1001 | |
Murashige & Skoog, Basal Salts | Caisson Laboratories, Inc. | MSP01-50LT | |
Pipet-Lite XLS LTS 8-CH Pipet 20-200uL | Rainin | L8-200XLS | |
Pipet-Lite XLS LTS 8-CH Pipet 2-20uL | Rainin | L8-20XLS | |
Polystyrene 100mm x 25mm sterile petri dish | VWR International | 89107-632 | |
Polystyrene 150mm x 15mm sterile petri dish | Fisher Scientific | FB08-757-14 | |
Polystyrene 150x15mm sterile petri dish | Fisher Scientific | 08-757-148 | |
Pure Bright Germicidal Ultra Bleach 5.7% Available Chlorine (defined as 100% bleach) | Staples | 1013131 | |
Rifampicin | Gold Biotechnology | R-120-25 | |
Silwet L-77 (non-ionic organosilicone surfactant co-polymer C13H34O4Si3 surfactant) | Fisher Scientific | NCO138454 | |
Tips LTS 20 μL 960/10 GPS-L10 | Rainin | 17005091 | |
Tips LTS 250 μL 960/10 GPS-L250 | Rainin | 17005093 | |
VWR dissecting forceps fine tip, 4.5" | VWR International | 82027-386 |
Access restricted. Please log in or start a trial to view this content.
An erratum was issued for: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay. The Introduction, Protocol, Representative Results and Discussion sections were updated.
The last paragraph of the Introduction section was updated from:
In the seedling flood assay described in this protocol, tomato seedlings are grown on Petri dishes of sterile Murashige and Skoog (MS) media for 10 days and then are flooded with an inoculum containing the bacteria of interest and a surfactant. Following flooding, seedlings can be quantitatively evaluated for disease resistance via bacterial growth assays. Additionally, seedling survival or death can act as a discrete resistance or disease phenotype 7–14 days after flooding. This approach offers a high-throughput alternative for screening large numbers of wild tomato accessions for resistance to Pst race 1 strains, such as Pst strain T1 (PstT1), and can easily be adapted to other bacterial strains of interest.
to:
In the seedling flood assay described in this protocol, tomato seedlings are grown on Petri dishes of sterile Murashige and Skoog (MS) media for 10 days and then are flooded with an inoculum containing the bacteria of interest and a surfactant. Following flooding, seedlings can be quantitatively evaluated for disease resistance via bacterial growth assays. Additionally, seedling survival or death can act as a discrete resistance or disease phenotype 7–14 days after flooding. This approach offers a high-throughput alternative for screening large numbers of wild tomato accessions for resistance to Pst race 1 strains, such as Pst strain 19 (Pst19), and can easily be adapted to other bacterial strains of interest.
Step 4.8 of the Protocol section was updated from:
to:
Step 5.2 of the Protocol section was updated from:
to:
Step 5.6 of the Protocol section was updated from:
to:
Step 6 of the Protocol section was updated from:
6. Preparation of PstT1 inoculum
to
6. Preparation of Pst19 inoculum
Step 6.2 of the Protocol section was updated from:
to:
Step 6.3 of the Protocol section was updated from:
to:
Step 8.3 of the Protocol section was updated from:
to:
Step 8.11 of the Protocol section was updated from:
to:
Step 10.7 of the Protocol section was updated from:
Genotype1 Column A | Tissue Weight (g) Column B | # of Colonies in a spot Column C | Dilution factor for spot2 Column D | Adjusted # of Colonies3 Column E | Dilution factor for serial dilution Column F | Total # of Colonies Column G (cfu/0.01 g)4 | Average # of Colonies (cfu/0.01 g) Column H | Average Log Growth (cfu/0.01 g (log10)) Column I |
Sample 1 | 0.004 g | 10 | 200 | calculated as: (C2 x 0.01 g) / B2 = 25 | 1000 | calculated as: (D2 x E2 x F2) = 5000000 | average for sample 1 through last sample: (ie. average G1:G3) = 7000000 | log of average ie. log(H2) = 6.85 |
Sample 2 | 0.003 g | 15 | 200 | 50 | 1000 | 10000000 | ||
Sample 3 | 0.002 g | 6 | 200 | 30 | 1000 | 6000000 | ||
1Data shown for 3 samples | ||||||||
2Based on plating 5 µL x 200 for 1 mL | ||||||||
3Cotyledons are too small to core so colony counts were normalized to 0.01 g of tissue based on the average mass of one MoneyMaker-PtoS cotyledon (data not shown) | ||||||||
4Adjusted per mL based on volume plated |
Table 1: Sample calculations for seedling bacterial growth assay. Sample calculations demonstrate how to normalize bacterial counts and determine log bacterial growth.
to:
Genotype1 Column A | Tissue Weight (g) Column B | # of Colonies in a spot Column C | Dilution factor for spot2 Column D | Adjusted # of Colonies3 Column E | Dilution factor for serial dilution Column F | Total # of Colonies Column G (cfu/0.01 g)4 | Average # of Colonies (cfu/0.01 g) Column H | Average Log Growth (cfu/0.1 g (log10)) Column I |
Sample 1 | 0.04 g | 10 | 200 | calculated as: (C2 x 0.1 g) / B2 = 25 | 1000 | calculated as: (D2 x E2 x F2) = 5000000 | average for sample 1 through last sample: (ie. average G1:G3) = 7000000 | log of average ie. log(H2) = 6.85 |
Sample 2 | 0.03 g | 15 | 200 | 50 | 1000 | 10000000 | ||
Sample 3 | 0.02 g | 6 | 200 | 30 | 1000 | 6000000 | ||
1Data shown for 3 samples | ||||||||
2Based on plating 5 µL x 200 for 1 mL | ||||||||
3Cotyledons are too small to core so colony counts were normalized to 0.1 g of tissue based on the average mass of one MoneyMaker-PtoS cotyledon (data not shown) | ||||||||
4Adjusted per mL based on volume plated |
Table 1: Sample calculations for seedling bacterial growth assay. Sample calculations demonstrate how to normalize bacterial counts and determine log bacterial growth.
Step 11.3 of the Protocol section was updated from:
to:
Figure 4 in the Protocol section was updated from:
Figure 4: Schematic representation of expected phenotypes for seedling resistance and death in various genetic backgrounds. (A) Seedlings of Rio Grande-PtoR and the near-isogenic cultivar Rio Grande-PtoS are displayed 7 days after flooding with PstDC3000 (OD600 = 0.005) + 0.015% surfactant. Rio Grande-PtoR displays consistent resistance, and Rio Grande-PtoS displays consistent susceptibility to infection with PstDC3000. These lines give rise to discrete and binary phenotypes. (B) Seedlings of a wild accession, such as Solanum neorickii LA1329, are shown 10 days after flooding with PstT1 (OD600 = 0.0075) + 0.015% surfactant. Seedlings display phenotypic variability but were recorded as binary phenotypes. The amount of phenotypic variability and the method of phenotyping (binary resistance or resistance spectrum) will depend on the particular accession tested. (C) Mapping populations generated by outcrossing wild accessions to susceptible cultivars may display a wider spectrum of phenotypes in F2 segregating populations. In this case, it may be most appropriate to record seedling phenotypes on a spectrum. Highly susceptible seedlings from a mapping population may be phenotyped for death as early as day 7 when flooded with PstT1, and typically show a brown apical meristem, no to very little extension of the epicotyl, and no new, green vegetative growth. The apical meristem of susceptible seedlings may stay green or very light brown for more time, and there may be some extension of the epicotyl and very little vegetative growth, which turns brown and arrests by day 10. Individual seedlings can be phenotyped for resistance based on the amount of new and ongoing vegetative growth by day 14. Seedlings can then be grouped based on the phenotypes described above into different categories of resistance such as weak, medium, or strong resistance. Please click here to view a larger version of this figure.
to:
Figure 4: Schematic representation of expected phenotypes for seedling resistance and death in various genetic backgrounds. (A) Seedlings of Rio Grande-PtoR and the near-isogenic cultivar Rio Grande-PtoS are displayed 7 days after flooding with PstDC3000 (OD600 = 0.005) + 0.015% surfactant. Rio Grande-PtoR displays consistent resistance, and Rio Grande-PtoS displays consistent susceptibility to infection with PstDC3000. These lines give rise to discrete and binary phenotypes. (B) Seedlings of a wild accession, such as Solanum neorickii LA1329, are shown 10 days after flooding with Pst19 (OD600 = 0.0075) + 0.015% surfactant. Seedlings display phenotypic variability but were recorded as binary phenotypes. The amount of phenotypic variability and the method of phenotyping (binary resistance or resistance spectrum) will depend on the particular accession tested. (C) Mapping populations generated by outcrossing wild accessions to susceptible cultivars may display a wider spectrum of phenotypes in F2 segregating populations. In this case, it may be most appropriate to record seedling phenotypes on a spectrum. Highly susceptible seedlings from a mapping population may be phenotyped for death as early as day 7 when flooded with Pst19, and typically show a brown apical meristem, no to very little extension of the epicotyl, and no new, green vegetative growth. The apical meristem of susceptible seedlings may stay green or very light brown for more time, and there may be some extension of the epicotyl and very little vegetative growth, which turns brown and arrests by day 10. Individual seedlings can be phenotyped for resistance based on the amount of new and ongoing vegetative growth by day 14. Seedlings can then be grouped based on the phenotypes described above into different categories of resistance such as weak, medium, or strong resistance. Please click here to view a larger version of this figure.
The second paragraph of the Representative Results section was updated from:
Phenotypic screening of wild accessions using the seedling resistance assay
Figure 6 shows representative results for seedlings of susceptible and resistant accessions 10–14 days after flooding with PstT1. Susceptible accessions include RG-PtoR, S. pimpinellifolium LA1375, and S. pimpinellifolium LA1606, and resistant accessions include S. neorickii LA1329. Ten-day-old seedlings were flooded with 10 mM MgCl2 + 0.015% surfactant as a negative control, and PstT1 at an optical density of 0.0075 + 0.015% surfactant. The seedlings were phenotyped at least 10 days after flooding, as PstT1-infected seedlings died more slowly than PstDC3000-infected seedlings. Mock-inoculated seedlings were green, healthy, and actively growing. This control is important to ensure that the accessions are not sensitive to the concentration of surfactant, and to ensure there is no bacterial contamination. Susceptible accessions (Rio Grande-PtoR [n = 7], S. pimpinellifolium LA1375 [n = 7], and S. pimpinellifolium LA1606 [n = 5]) were dead, had brown apical meristems, and lacked new growth 10–14 days after inoculation with PstT1. In contrast, two S. neorickii LA1329 (n = 3) seedlings displayed a high level of new, green growth and survived infection with PstT1 (Figure 6). Three LA1329 seedlings did not germinate. Typically, 5–7 individuals were screened for each accession in a primary screen to determine the prevalence of resistance in the population. When a more genetically complex wild accession, such as LA1329, is flooded with PstT1, the resistance phenotypes display slightly more variability among individual seedlings, compared to Moneymaker-PtoR treated with PstDC3000. However, the resistance phenotypes were usually less variable than those seen in F2 mapping populations. Thus, binary phenotyping criteria was used for LA1329.
to:
Phenotypic screening of wild accessions using the seedling resistance assay
Figure 6 shows representative results for seedlings of susceptible and resistant accessions 10–14 days after flooding with Pst19. Susceptible accessions include RG-PtoR, S. pimpinellifolium LA1375, and S. pimpinellifolium LA1606, and resistant accessions include S. neorickii LA1329. Ten-day-old seedlings were flooded with 10 mM MgCl2 + 0.015% surfactant as a negative control, and Pst19 at an optical density of 0.0075 + 0.015% surfactant. The seedlings were phenotyped at least 10 days after flooding, as Pst19-infected seedlings died more slowly than PstDC3000-infected seedlings. Mock-inoculated seedlings were green, healthy, and actively growing. This control is important to ensure that the accessions are not sensitive to the concentration of surfactant, and to ensure there is no bacterial contamination. Susceptible accessions (Rio Grande-PtoR [n = 7], S. pimpinellifolium LA1375 [n = 7], and S. pimpinellifolium LA1606 [n = 5]) were dead, had brown apical meristems, and lacked new growth 10–14 days after inoculation with Pst19. In contrast, two S. neorickii LA1329 (n = 3) seedlings displayed a high level of new, green growth and survived infection with Pst19 (Figure 6). Three LA1329 seedlings did not germinate. Typically, 5–7 individuals were screened for each accession in a primary screen to determine the prevalence of resistance in the population. When a more genetically complex wild accession, such as LA1329, is flooded with Pst19, the resistance phenotypes display slightly more variability among individual seedlings, compared to Moneymaker-PtoR treated with PstDC3000. However, the resistance phenotypes were usually less variable than those seen in F2 mapping populations. Thus, binary phenotyping criteria was used for LA1329.
Figure 6 in the Representative Results section was updated from:
Figure 6: Phenotypic characterization of resistance or disease symptoms 10–14 days post-infection in wild accessions. Rio Grande-PtoR, S. pimpinellifolium LA1606, S. pimpinellifolium LA1375 and S. neorickii LA1329 tomato seedlings were grown on 0.5x MS plates for 10 days, and then flooded with PstT1 (OD600 = 0.0075) + 0.015% surfactant. The number of surviving seedlings for each wild accession out of the total number tested is shown. Scale bar = 1 cm. Please click here to view a larger version of this figure.
to:
Figure 6: Phenotypic characterization of resistance or disease symptoms 10–14 days post-infection in wild accessions. Rio Grande-PtoR, S. pimpinellifolium LA1606, S. pimpinellifolium LA1375 and S. neorickii LA1329 tomato seedlings were grown on 0.5x MS plates for 10 days, and then flooded with Pst19 (OD600 = 0.0075) + 0.015% surfactant. The number of surviving seedlings for each wild accession out of the total number tested is shown. Scale bar = 1 cm. Please click here to view a larger version of this figure.
The third paragraph of the Representative Results section was updated from:
Quantitative assessment of bacterial growth using the seedling flood assay
To confirm that the observed resistance in LA1329 to PstT1 resulted in lower bacterial growth, bacterial growth assays were carried out in tomato seedlings. The level of PstT1 growth in Moneymaker-PtoS and S. neorickii LA1329 was determined 4 days post-infection. Moneymaker-PtoS is a near-isogenic line with consistent susceptibility among individual seedlings. Wild accessions such as S. neorickii LA1329 are often more genetically complex. LA1329 displays approximately 60% resistance to PstT1 across the population22. Because seedlings may drop their cotyledons after infection, one seedling was grown on each plate to correlate bacterial growth in the harvested cotyledon with overall seedling survival or death as determined phenotypically at least 10 days after flooding. The bacterial counts on day 4 for each seedling were normalized to 0.01 g of tissue and converted to log growth (CFU/0.01 g(log10)). Log growth for phenotypically resistant LA1329 seedlings (LA1329RES) or phenotypically susceptible seedlings (LA1329SUS) were separately pooled and compared to each other and the susceptible cultivar Moneymaker-PtoS. For example, there was a 1.7 log difference in bacterial growth between LA1329RES (log 6.3) and LA1329SUS (log 8.0), and a 1.6 log difference between LA1329RES (log 6.3) and Moneymaker-PtoS (log 7.9) (Figure 7). Therefore, phenotypic resistance correlated with quantitative resistance in the seedling assays.
to:
Quantitative assessment of bacterial growth using the seedling flood assay
To confirm that the observed resistance in LA1329 to Pst19 resulted in lower bacterial growth, bacterial growth assays were carried out in tomato seedlings. The level of Pst19 growth in Moneymaker-PtoS and S. neorickii LA1329 was determined 4 days post-infection. Moneymaker-PtoS is a near-isogenic line with consistent susceptibility among individual seedlings. Wild accessions such as S. neorickii LA1329 are often more genetically complex. LA1329 displays approximately 60% resistance to Pst19 across the population22. Because seedlings may drop their cotyledons after infection, one seedling was grown on each plate to correlate bacterial growth in the harvested cotyledon with overall seedling survival or death as determined phenotypically at least 10 days after flooding. The bacterial counts on day 4 for each seedling were normalized to 0.01 g of tissue and converted to log growth (CFU/0.01 g(log10)). Log growth for phenotypically resistant LA1329 seedlings (LA1329RES) or phenotypically susceptible seedlings (LA1329SUS) were separately pooled and compared to each other and the susceptible cultivar Moneymaker-PtoS. For example, there was a 1.7 log difference in bacterial growth between LA1329RES (log 6.3) and LA1329SUS (log 8.0), and a 1.6 log difference between LA1329RES (log 6.3) and Moneymaker-PtoS (log 7.9) (Figure 7). Therefore, phenotypic resistance correlated with quantitative resistance in the seedling assays.
Figure 7 in the Representative Results section was updated from:
x
Figure 7: Resistant Solanum neorickii LA1329 seedlings support lower bacterial growth than Moneymaker-PtoS or susceptible S. neorickii LA1329. Bacterial counts were determined 4 days post-inoculation from S. neorickii LA1329 (n = 14) and Moneymaker-PtoS (n = 10) seedlings infected with PstT1 and normalization was performed to 0.01 g of tissue. For LA1329, the two phenotypic groups, susceptible (SUS) or resistant (RES), were observed and counted separately. Above the bar * = statistically significant difference determined by a one-factor analysis of variance. A general linear model procedure (p < 0.001) followed by a multiple comparison of means using Tukey's post hoc test was used. Error bars = standard error. The figure indicates one representative experiment. Please click here to view a larger version of this figure.
x
Figure 7: Resistant Solanum neorickii LA1329 seedlings support lower bacterial growth than Moneymaker-PtoS or susceptible S. neorickii LA1329. Bacterial counts were determined 4 days post-inoculation from S. neorickii LA1329 (n = 14) and Moneymaker-PtoS (n = 10) seedlings infected with Pst19 and normalization was performed to 0.1 g of tissue. For LA1329, the two phenotypic groups, susceptible (SUS) or resistant (RES), were observed and counted separately. Above the bar * = statistically significant difference determined by a one-factor analysis of variance. A general linear model procedure (p < 0.001) followed by a multiple comparison of means using Tukey's post hoc test was used. Error bars = standard error. The figure indicates one representative experiment. Please click here to view a larger version of this figure.
The first paragraph of the Discussion section was updated from:
A protocol for flood inoculation with PstDC3000 or PstT1 optimized to detect resistance to these bacterial strains in tomato seedlings is described. There are several critical parameters for optimal results in the seedling resistance assay, including bacterial concentration and surfactant concentration, which were empirically determined22. For PstDC3000, the optical density was optimized to achieve complete survival on a resistant cultivar containing the Pto/Prf cluster and complete death on a susceptible cultivar lacking the Pto/Prf cluster22. For a strain such as PstT1, where there are no known resistant varieties, the optical density was optimized to be the lowest possible for consistent and complete plant death22. Uppalapati et al.24 designed a tomato seedling assay to investigate the pathogenesis of PstDC3000 and the virulence function of coronatine. In this virulence assay, infections were performed using bacteria concentrated to an OD600 of 0.124, 20x higher than the optical density of strains used in our resistance assay. Recognition of PstDC3000 effectors AvrPto and AvrPtoB in tomato seedlings carrying the Pto/Prf gene cluster results in ETI and a macroscopic HR22. In the context of a strong immune response such as ETI, a lower bacterial titer was used for PstDC3000 to avoid overwhelming genetic resistance from the Pto/Prf gene cluster22. In addition, these results suggest that a high bacterial concentration could overwhelm weaker immune responses such as PTI or quantitative partial resistance, where multiple genes contribute to the overall phenotype. Surfactant is necessary for the bacteria to adhere to the leaf surface; however, high concentrations can cause chlorosis of the leaf22. We previously tested a range of surfactant concentrations to empirically determine the ideal concentration in 10-day-old tomato seedlings22. When testing new species that may differ in their sensitivity to surfactant, the surfactant concentration should be optimized to identify a concentration that does not cause damage or chlorosis in the absence of bacteria. Appropriate assay conditions will require optimization of a surfactant concentration that does not cause damage, and a bacterial concentration that causes disease in all susceptible controls.
to:
A protocol for flood inoculation with PstDC3000 or Pst19 optimized to detect resistance to these bacterial strains in tomato seedlings is described. There are several critical parameters for optimal results in the seedling resistance assay, including bacterial concentration and surfactant concentration, which were empirically determined22. For PstDC3000, the optical density was optimized to achieve complete survival on a resistant cultivar containing the Pto/Prf cluster and complete death on a susceptible cultivar lacking the Pto/Prf cluster22. For a strain such as Pst19, where there are no known resistant varieties, the optical density was optimized to be the lowest possible for consistent and complete plant death22. Uppalapati et al.24 designed a tomato seedling assay to investigate the pathogenesis of PstDC3000 and the virulence function of coronatine. In this virulence assay, infections were performed using bacteria concentrated to an OD600 of 0.124, 20x higher than the optical density of strains used in our resistance assay. Recognition of PstDC3000 effectors AvrPto and AvrPtoB in tomato seedlings carrying the Pto/Prf gene cluster results in ETI and a macroscopic HR22. In the context of a strong immune response such as ETI, a lower bacterial titer was used for PstDC3000 to avoid overwhelming genetic resistance from the Pto/Prf gene cluster22. In addition, these results suggest that a high bacterial concentration could overwhelm weaker immune responses such as PTI or quantitative partial resistance, where multiple genes contribute to the overall phenotype. Surfactant is necessary for the bacteria to adhere to the leaf surface; however, high concentrations can cause chlorosis of the leaf22. We previously tested a range of surfactant concentrations to empirically determine the ideal concentration in 10-day-old tomato seedlings22. When testing new species that may differ in their sensitivity to surfactant, the surfactant concentration should be optimized to identify a concentration that does not cause damage or chlorosis in the absence of bacteria. Appropriate assay conditions will require optimization of a surfactant concentration that does not cause damage, and a bacterial concentration that causes disease in all susceptible controls.
The third paragraph of the Discussion section was updated from:
Pst is a foliar pathogen that preferentially colonizes the aerial parts of tomato seedlings, including the cotyledons24 (Figure 3). Therefore, qualitative phenotyping in the seedling flood assay focuses on growth and disease symptoms in aerial portions of the seedling, and tissue for the bacterial growth assay is sampled from the cotyledons for quantitative analysis. After flood inoculation, seedlings may die within 7–10 days after inoculation with PstDC3000 or 10–14 days after inoculation with PstT1, as discussed in section 11. Seedling death is visualized by a brown apical meristem, arrested epicotyl elongation, and/or arrested vegetative growth. If different bacterial strains are used, the timing will have to be empirically determined. In addition, the progression of disease on control plants should be monitored daily after flooding until a consistent time frame from the onset of disease symptoms to seedling death can be identified. Depending on the genotypes and treatments used in the flood assay, seedling phenotypes can be recorded as binary phenotypes or on a disease spectrum (Figure 4). A broader spectrum of phenotypes may be observed when flood inoculating F2 mapping populations from wild tomato accessions crossed to susceptible cultivars (Figure 4C). It may be best to phenotype segregating populations on a disease spectrum depending on how quickly the seedling dies and the degree of new vegetative growth and branching (Figure 4C). The seedling flood assay can also be used in conjunction with the seedling bacterial growth assay to quantitatively assess levels of bacterial growth associated with qualitative phenotypes in individual seedlings (Figure 7). Very large reductions (i.e., ~log 3) in bacterial growth or strong resistance in resistant seedlings of a wild accession compared to a susceptible cultivar suggest that the underlying genetic basis of resistance may be due to ETI22. Smaller reductions in bacterial growth (i.e., ~log 1.7), as observed in LA1329 seedlings, may be due to the contribution of weaker resistance from quantitative trait loci and/or PTI. Thus, the seedling growth assay can be an important tool in further characterizing resistance in wild tomato lines.
to:
Pst is a foliar pathogen that preferentially colonizes the aerial parts of tomato seedlings, including the cotyledons24 (Figure 3). Therefore, qualitative phenotyping in the seedling flood assay focuses on growth and disease symptoms in aerial portions of the seedling, and tissue for the bacterial growth assay is sampled from the cotyledons for quantitative analysis. After flood inoculation, seedlings may die within 7–10 days after inoculation with PstDC3000 or 10–14 days after inoculation with Pst19, as discussed in section 11. Seedling death is visualized by a brown apical meristem, arrested epicotyl elongation, and/or arrested vegetative growth. If different bacterial strains are used, the timing will have to be empirically determined. In addition, the progression of disease on control plants should be monitored daily after flooding until a consistent time frame from the onset of disease symptoms to seedling death can be identified. Depending on the genotypes and treatments used in the flood assay, seedling phenotypes can be recorded as binary phenotypes or on a disease spectrum (Figure 4). A broader spectrum of phenotypes may be observed when flood inoculating F2 mapping populations from wild tomato accessions crossed to susceptible cultivars (Figure 4C). It may be best to phenotype segregating populations on a disease spectrum depending on how quickly the seedling dies and the degree of new vegetative growth and branching (Figure 4C). The seedling flood assay can also be used in conjunction with the seedling bacterial growth assay to quantitatively assess levels of bacterial growth associated with qualitative phenotypes in individual seedlings (Figure 7). Very large reductions (i.e., ~log 3) in bacterial growth or strong resistance in resistant seedlings of a wild accession compared to a susceptible cultivar suggest that the underlying genetic basis of resistance may be due to ETI22. Smaller reductions in bacterial growth (i.e., ~log 1.7), as observed in LA1329 seedlings, may be due to the contribution of weaker resistance from quantitative trait loci and/or PTI. Thus, the seedling growth assay can be an important tool in further characterizing resistance in wild tomato lines.
The fourth paragraph of the Discussion section was updated from:
Typically, genetic screens have been performed on four- to five-week-old adult tomato plants to identify the genetic basis of P. syringae resistance in wild accessions20,21. Adult tomato plants require much longer growth times, require more space in the growth chamber, and are much larger plants, which means that usually few individuals are screened for each line. The seedling flood assay provides a powerful, alternative approach in the identification of P. syringae resistance in wild tomato accessions. Screening at the seedling stage permits a large sample size to be tested which can be particularly advantageous in detecting resistance in genetically complex populations. Reduced growth chamber space requirements and growth time facilitate a high-throughput approach and rapid detection of natural resistance in wild accessions to emerging pathogens. Furthermore, P. syringae resistance that was identified at the seedling stage in this assay is not restricted to the developmental stage. S. neorickii LA1329 and S. habrochaites LA1253 were initially identified at the seedling stage and also display resistance to PstT1 in adult plants as previously described22.
to:
Typically, genetic screens have been performed on four- to five-week-old adult tomato plants to identify the genetic basis of P. syringae resistance in wild accessions20,21. Adult tomato plants require much longer growth times, require more space in the growth chamber, and are much larger plants, which means that usually few individuals are screened for each line. The seedling flood assay provides a powerful, alternative approach in the identification of P. syringae resistance in wild tomato accessions. Screening at the seedling stage permits a large sample size to be tested which can be particularly advantageous in detecting resistance in genetically complex populations. Reduced growth chamber space requirements and growth time facilitate a high-throughput approach and rapid detection of natural resistance in wild accessions to emerging pathogens. Furthermore, P. syringae resistance that was identified at the seedling stage in this assay is not restricted to the developmental stage. S. neorickii LA1329 and S. habrochaites LA1253 were initially identified at the seedling stage and also display resistance to Pst19 in adult plants as previously described22.
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneThis article has been published
Video Coming Soon