Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Анализ потопа саженцев облегчает быстрый скрининг диких томатов на устойчивость к бактерии Pseudomonas шприцев. Этот опрос, используемый в сочетании с рассеиванием бактериального роста, может помочь в дальнейшей характеристике основной резистентности к бактерии, и может быть использован для отображения данных для определения генетической основы резистентности.
Помидор является агрономически важной культурой, которая может быть заражена Pseudomonas шприцев, Грам-отрицательных бактерий, в результате бактериальной болезни пятнышко. Помидор-P. syringae pv. томатная патосистема широко используется для вскрытия генетической основы врожденных реакций растений и устойчивости к болезням. В то время как болезнь успешно управляется в течение многих десятилетий путем введения кластера генов Pto/Prf из Solanum pimpinellifolium в культивируемые помидоры, раса 1 штаммов P. syringae эволюционировали, чтобы преодолеть сопротивление, присуждаемое кластером генов Pto/Prf и происходит во всем мире.
Дикие виды томатов являются важными резервуарами естественного разнообразия в распознавании патогенов, потому что они развивались в различных средах с различным иным патогенным давлением. В типичных экранах для сопротивления заболевания в одичалых томатах, взрослые заводы использованы, которые могут ограничивать число заводов которые можно экранировать из-за их выдвинутого времени роста и больших требований пространства роста. Мы разработали метод проверки 10-дневных саженцев томатов на устойчивость, который минимизирует время роста растений и пространство камеры роста, позволяет быстро текучесть растений, и позволяет проверить большие размеры выборки. Результаты семени выживания или смерти можно рассматривать как дискретные фенотипы или по шкале сопротивления, определяемой количеством нового роста выживших саженцев после наводнения. Этот метод был оптимизирован для проверки 10-дневных саженцев томатов на устойчивость к двум штаммам P. syringae и может быть легко адаптирован к другим штаммам P. syringae.
Pseudomonas syringae является грамотрицательным патогенной бактерией, которая заражает широкий спектр растительных хозяев. Бактерии попадают в растение-хозяина через стоматы или физические раны и размножаться в апопласте 1. Растения развили двухуровневый иммунный ответ для защиты от инфекции бактериальными патогенами. Первый уровень происходит на поверхности клеток растений, где рецепторы распознавания образов на мембране клеток растений воспринимают высоко консервированные патогенно-ассоциированные молекулярные модели (PAMPs) в процессе, называемом PAMP-спровоцированный иммунитет (PTI)2. В ходе этого процесса, хозяин завода upregulates пути обороны ответ, в том числе осаждение кальяны на клеточной стенке, закрытие стомата, производство реактивных видов кислорода, и индукции патогенеза связанных генов.
Бактерии могут преодолеть PTI, используя систему секреции типа III для доставки белков, называемых эффекторами, непосредственно в клетку растения3. Эффекторные белки обычно нацелены на компоненты PTI и способствуют патогенной вирулентности4. Второй уровень растительного иммунитета возникает в растительной клетке при распознавании белков-эффекторов. Это признание зависит от генов устойчивости, которые кодируют нуклеотид-связывающий сайт, богатый лейкином, содержащий рецепторы (НЛР). НЛР способны либо распознавать эффекторов напрямую, либо распознавать их активность на вирулентности или приманку5. Затем они вызывают вторичный иммунный ответ в процессе, называемом эффектор-спровоцированный иммунитет (ETI), который часто связан с гиперчувствительной реакции (HR), форма локализованной смерти клеток в месте инфекции6. В отличие от генной резистентности, связанной с ETI, растения могут проявлять количественную частичную резистентность, которая зависит от вклада нескольких генов7.
P. syringae pv. помидор (Pst) является причинным агентом бактериальной пятнышко на помидоры и является постоянной сельскохозяйственной проблемой. Преобладающие штаммы в этой области, как правило, были Pst расы 0 штаммов, которые выражают либо или оба типа III эффекторов AvrPto и AvrPtoB. DC3000 (PstDC3000) является репрезентативной расы 0 штамма и модель патогена, который может вызвать бактериальные пятнышко в томатах. Для борьбы с бактериальной болезнью пятнышка, заводчики introgressed Pto pto p. syringae pv. помидоры/Prf -устойчивость Пто и чувствительность фентиона- генкластер из дикого вида томатов Solanum pimpinellifolium в современные сорта8,9. Ген Пто кодирует серино-threonine белка киназы, что, вместе с Prf NLR, придают устойчивость к PstDC3000 через признание эффекторов AvrPto и AvrPtoB10,11,12,13,14. Тем не менее, это сопротивление является неэффективным против возникающих расы 1 штаммов, что позволяет их быстрого и агрессивного распространения в последние годы15,16. Штаммы гонки 1 уклоняются от признания кластера Pto/Prf, потому что AvrPto либо теряется, либо мутирует в этих штаммах, а AvrPtoB, кажется, накапливает минимально15,17,18.
Дикие популяции томатов являются важными резервуарами естественного изменения устойчивости Pst и ранее использовались для выявления потенциальной устойчивости локусов19,20,21. Тем не менее, текущие экраны для возбудителя устойчивость использовать 4-5-недельный взрослых растений20,21. Таким образом, они ограничены временем роста, пространством камеры роста и относительно небольшими размерами выборки. Для устранения ограничений обычных подходов, мы разработали высокой пропускной томатной P. syringae сопротивление с использованием 10-дневных саженцев помидоров22. Этот подход предлагает ряд преимуществ по сравнению с использованием взрослых растений: а именно, более короткое время роста, снижение требований к пространству, и более высокую пропускную стоимость. Кроме того, мы продемонстрировали, что этот подход точно резюмирует фенотипы устойчивости к болезням, наблюдаемые у взрослых растений22.
В рассаде наводнений, описанных в этом протоколе, саженцы помидоров выращиваются на чашках Петри стерильных Мурашиге и Skoog (MS) сми в течение 10 дней, а затем наводнены инокулум, содержащий бактерии интереса и сурфактант. После наводнения, саженцы могут быть количественно оценены на устойчивость к болезням с помощью бактериальных анализов роста. Кроме того, выживание рассады или смерть может выступать в качестве дискретной резистентности или фенотипа болезни 7-14 дней после наводнения. Этот подход предлагает высокую пропускную стоимость альтернативу для скрининга большого количества диких томатов для сопротивления Pst расы 1 штаммов, таких как Штамм Pst T1 (PstT1), и может быть легко адаптирована к другим бактериальным штаммам интереса.
1. Подготовка и использование шкафа для биобезопасности
2. Подготовка растительных носителей
3. Подготовка растительных материалов и условия роста
Рисунок 1: Стадия развития типичных 10-дневных саженцев помидоров. Семена томатов Rio Grande-PtoR были стерилизованы, покрыты и стратифицированы в течение не менее 3 дней в темноте при 4 градусах Цельсия. Саженцы выращивались на 0,5x MS пластин в течение 10 дней при 22 градусах Цельсия, прежде чем быть затоплены. Как правило, в 10 дней котиледоны полностью расширяются, и начинают появляться первые истинные листья. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
4. Подготовка Королевских B23 (KB) СМИ
5. Поддержание бактериальных штаммов и культурных условий
6. Подготовка PstT1 inoculum
7. Подготовка PstDC3000 инокулум
8. Метод затопления саженцев томатов
9. Поверхностная стерилизация котиледонов для асссея роста бактерий
10. Бактериальный рост асссе
Рисунок 2: Серийные разбавления для рассады бактериального роста анализы. (A) Ткань листьев с macerated от зараженных заводов разбавлена до подсчитывать колонии. Разбавления выполняются в 96 хорошо пластины (100 неразбавлен). Как правило, разбавления производятся от 10-1 до 10-5 . (B) Покрытие разбавления для бактериальных колоний рассчитывает. В общей сложности 5 л каждого столбца серии разбавления покрыто, от большинства разбавленных до наиболее концентрированных. После того, как колонии полностью высохли, пластина инкубируется при 28 градусах по Цельсию при 36-48 ч. Колонии подсчитываются под 10-кратным расчленяющим микроскопом. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
Генотип1 Колонка А | Вес ткани (g) Колонка B | - колоний в месте Колонка C | Коэффициент разбавления для пятна2 Колонка D | Скорректировано - колоний3 Колонка E | Коэффициент разбавления для последовательной разбавления колонки F | Итого - колонна G (cfu/0.01 g)4 | Средняя колонка H в среднем по колониям (cfu/0.01 г) | Средний рост журнала (cfu/0.01 г (журнал10)) Колонка I |
Пример 1 | 0,004 г | 10 | 200 | рассчитывается как: (C2 x 0.01 г) / B2 25 | 1000 | рассчитывается как: (D2 x E2 x F2) | среднее значение для образца 1 по последнему образцу: (т.е. средний G1:G3) | журнал среднего т.е. журнал (H2) 6,85 |
Пример 2 | 0,003 г | 15 | 200 | 50 | 1000 | 10000000 | ||
Пример 3 | 0,002 г | 6 | 200 | 30 | 1000 | 6000000 | ||
1 Данные, показанные по 3 примерам | ||||||||
2 На основе покрытия 5 л х 200 на 1 мл | ||||||||
3 Cotyledons слишком малы к сердечнику поэтому отсчеты колонии были нормализованы до 0.01 g ткани основанной на средней массе одного MoneyMaker-PtoS cotyledon (данные не показаны) | ||||||||
4 Скорректирована на мл на основе объема покрынный |
Таблица 1: Выборка расчетов для оценки роста роста саженцев. Выборочные расчеты показывают, как нормализовать бактериальные отсчеты и определить рост бактерий.
11. Фенотипирование для сопротивления
Рисунок 3: Схематическое представление саженца помидоров. Различные части саженцы помидоров изображены, в том числе гипокотила, котедоны, эпепотил, стрелять апикальный меристем, и истинные листья. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
Рисунок 4: Схематическое представление ожидаемых фенотипов для сопротивления рассады и смерти в различных генетических фонах. (A) Семена Рио-Гранде-PtoR и почти изогенный сорт Рио-Гранде-PtoS отображаются через 7 дней после наводнения с PstDC3000 (OD 600 и 0,005) 0,015% surfactant. Rio Grande-PtoR проявляет последовательную устойчивость, а Rio Grande-PtoS отображает последовательную восприимчивость к инфекции PstDC3000. Эти линии приводят к дискретным и бинарным фенотипам. (B) Рассада дикого присоединения, такие как Solanum neorickii LA1329, показаны через 10 дней после затопления pstT1 (OD600 и 0.0075) 0,015% surfactant. Рассада отображает фенотипическую изменчивость, но были записаны как бинарные фенотипы. Количество фенотипической изменчивости и метод фенотипирования (бинарное сопротивление или спектр сопротивления) будет зависеть от конкретного присоединения испытания. (C) Картирование популяций, порожденных перекрестием диких присоединений к восприимчивым сортам, может отображать более широкий спектр фенотипов в группе F2, сегрегирующих популяции. В этом случае наиболее целесообразным может быть запись фенотипов рассады на спектре. Очень восприимчивы саженцы из картографирования населения может быть фенотипом для смерти уже в 7-й день, когда затоплены с PstT1, и, как правило, показывают коричневый апикальный меристем, нет очень мало расширения эпепотил, и не новый, зеленый вегетативного роста. Апикальный меристем восприимчивых саженцев может оставаться зеленым или очень светло-коричневый больше времени, и может быть некоторое расширение эпепотил и очень мало вегетативного роста, который становится коричневым и арестов на 10 день. Индивидуальные саженцы могут быть фенотипизированы для сопротивления на основе количества новых и текущих вегетативного роста на 14-й день. Рассада может быть сгруппирована на основе фенотипов, описанных выше, в различные категории сопротивления, такие как слабое, среднее или сильное сопротивление. Пожалуйста, нажмите здесь, чтобы просмотреть большую версию этой цифры.
Обнаружение PtoR-опосредованного иммунитета в сортах и изогенных линиях с использованием рассады
Рисунок 5 показывает репрезентативные результаты для Moneymaker-PtoR и Moneymaker-PtoS сортов 7-10 дней после наводнения с PstDC3000. До заражения 10-дневные саженц...
Описан протокол прививки от наводнений pstDC3000 или PstT1, оптимизированный для обнаружения устойчивости к этим бактериальным штаммам в саженцах помидоров. Есть несколько критических параметров для оптимальных результатов в растестировани на саженец, включая концентрацию бакте?...
Авторам нечего раскрывать.
Мы благодарим Джейми Кальму за тестирование влияния объема средств массовой информации на результаты болезней или резистентности. Мы благодарим д-ра Маэля Бодена и д-ра Карла Ш.Шайбера из лаборатории Льюиса за предоставление конструктивных замечаний и предложений по рукописи. Исследования иммунитета растений в лаборатории Льюиса были поддержаны USDA ARS 2030-21000-046-00D и 2030-21000-050-00D (JDL) и Управлением по биологическим наукам NSF IOS-1557661 (JDL).
Name | Company | Catalog Number | Comments |
3M Tape Micropore 1/2" x 10 YD CS 240 (1.25 cm x 9.1 m) | VWR International | 56222-182 | |
3mm borosilicate glass beads | Friedrich & Dimmock | GB3000B | |
Bacto peptone | BD | 211677 | |
Bacto agar | BD | 214010 | |
Biophotometer Plus | Eppendorf | E952000006 | |
Biosafety cabinet, class II type A2 | |||
BRAND Disposable Plastic Cuvettes, Polystyrene | VWR International | 47744-642 | |
Chenille Kraft Flat Wood Toothpicks | VWR International | 500029-808 | |
cycloheximide | Research Products International | C81040-5.0 | |
Dibasic potassium phosphate anhydrous, ACS grade | Fisher Scientific | P288-500 | |
Dimethylformamide | |||
Dissecting microscope (Magnification of at least 10x) | |||
Ethanol - 190 Proof | |||
Falcon polystyrene 96 well microplates, flat-bottom | Fisher Scientific | 08-772-3 | |
Glass Alcohol Burner Wick | Fisher Scientific | S41898A / No. W-125 | |
Glass Alcohol Burners | Fisher Scientific | S41898 / No. BO125 | |
Glycerol ACS reagent | VWR International | EMGX0185-5 | |
Kimberly-Clark™ Kimtech Science™ Kimwipes™ Delicate Task Wipers | Fisher Scientific | 06-666-A | |
Magnesium chloride, ACS grade | VWR International | 97061-356 | |
Magnesium sulfate heptahydrate, ACS grade | VWR International | 97062-130 | |
Microcentrifuge tubes, 1.5 mL | |||
Microcentrifuge tubes, 2.2 mL | |||
Mini Beadbeater-96, 115 volt | Bio Spec Products Inc. | 1001 | |
Murashige & Skoog, Basal Salts | Caisson Laboratories, Inc. | MSP01-50LT | |
Pipet-Lite XLS LTS 8-CH Pipet 20-200uL | Rainin | L8-200XLS | |
Pipet-Lite XLS LTS 8-CH Pipet 2-20uL | Rainin | L8-20XLS | |
Polystyrene 100mm x 25mm sterile petri dish | VWR International | 89107-632 | |
Polystyrene 150mm x 15mm sterile petri dish | Fisher Scientific | FB08-757-14 | |
Polystyrene 150x15mm sterile petri dish | Fisher Scientific | 08-757-148 | |
Pure Bright Germicidal Ultra Bleach 5.7% Available Chlorine (defined as 100% bleach) | Staples | 1013131 | |
Rifampicin | Gold Biotechnology | R-120-25 | |
Silwet L-77 (non-ionic organosilicone surfactant co-polymer C13H34O4Si3 surfactant) | Fisher Scientific | NCO138454 | |
Tips LTS 20 μL 960/10 GPS-L10 | Rainin | 17005091 | |
Tips LTS 250 μL 960/10 GPS-L250 | Rainin | 17005093 | |
VWR dissecting forceps fine tip, 4.5" | VWR International | 82027-386 |
An erratum was issued for: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay. The Introduction, Protocol, Representative Results and Discussion sections were updated.
The last paragraph of the Introduction section was updated from:
In the seedling flood assay described in this protocol, tomato seedlings are grown on Petri dishes of sterile Murashige and Skoog (MS) media for 10 days and then are flooded with an inoculum containing the bacteria of interest and a surfactant. Following flooding, seedlings can be quantitatively evaluated for disease resistance via bacterial growth assays. Additionally, seedling survival or death can act as a discrete resistance or disease phenotype 7–14 days after flooding. This approach offers a high-throughput alternative for screening large numbers of wild tomato accessions for resistance to Pst race 1 strains, such as Pst strain T1 (PstT1), and can easily be adapted to other bacterial strains of interest.
to:
In the seedling flood assay described in this protocol, tomato seedlings are grown on Petri dishes of sterile Murashige and Skoog (MS) media for 10 days and then are flooded with an inoculum containing the bacteria of interest and a surfactant. Following flooding, seedlings can be quantitatively evaluated for disease resistance via bacterial growth assays. Additionally, seedling survival or death can act as a discrete resistance or disease phenotype 7–14 days after flooding. This approach offers a high-throughput alternative for screening large numbers of wild tomato accessions for resistance to Pst race 1 strains, such as Pst strain 19 (Pst19), and can easily be adapted to other bacterial strains of interest.
Step 4.8 of the Protocol section was updated from:
to:
Step 5.2 of the Protocol section was updated from:
to:
Step 5.6 of the Protocol section was updated from:
to:
Step 6 of the Protocol section was updated from:
6. Preparation of PstT1 inoculum
to
6. Preparation of Pst19 inoculum
Step 6.2 of the Protocol section was updated from:
to:
Step 6.3 of the Protocol section was updated from:
to:
Step 8.3 of the Protocol section was updated from:
to:
Step 8.11 of the Protocol section was updated from:
to:
Step 10.7 of the Protocol section was updated from:
Genotype1 Column A | Tissue Weight (g) Column B | # of Colonies in a spot Column C | Dilution factor for spot2 Column D | Adjusted # of Colonies3 Column E | Dilution factor for serial dilution Column F | Total # of Colonies Column G (cfu/0.01 g)4 | Average # of Colonies (cfu/0.01 g) Column H | Average Log Growth (cfu/0.01 g (log10)) Column I |
Sample 1 | 0.004 g | 10 | 200 | calculated as: (C2 x 0.01 g) / B2 = 25 | 1000 | calculated as: (D2 x E2 x F2) = 5000000 | average for sample 1 through last sample: (ie. average G1:G3) = 7000000 | log of average ie. log(H2) = 6.85 |
Sample 2 | 0.003 g | 15 | 200 | 50 | 1000 | 10000000 | ||
Sample 3 | 0.002 g | 6 | 200 | 30 | 1000 | 6000000 | ||
1Data shown for 3 samples | ||||||||
2Based on plating 5 µL x 200 for 1 mL | ||||||||
3Cotyledons are too small to core so colony counts were normalized to 0.01 g of tissue based on the average mass of one MoneyMaker-PtoS cotyledon (data not shown) | ||||||||
4Adjusted per mL based on volume plated |
Table 1: Sample calculations for seedling bacterial growth assay. Sample calculations demonstrate how to normalize bacterial counts and determine log bacterial growth.
to:
Genotype1 Column A | Tissue Weight (g) Column B | # of Colonies in a spot Column C | Dilution factor for spot2 Column D | Adjusted # of Colonies3 Column E | Dilution factor for serial dilution Column F | Total # of Colonies Column G (cfu/0.01 g)4 | Average # of Colonies (cfu/0.01 g) Column H | Average Log Growth (cfu/0.1 g (log10)) Column I |
Sample 1 | 0.04 g | 10 | 200 | calculated as: (C2 x 0.1 g) / B2 = 25 | 1000 | calculated as: (D2 x E2 x F2) = 5000000 | average for sample 1 through last sample: (ie. average G1:G3) = 7000000 | log of average ie. log(H2) = 6.85 |
Sample 2 | 0.03 g | 15 | 200 | 50 | 1000 | 10000000 | ||
Sample 3 | 0.02 g | 6 | 200 | 30 | 1000 | 6000000 | ||
1Data shown for 3 samples | ||||||||
2Based on plating 5 µL x 200 for 1 mL | ||||||||
3Cotyledons are too small to core so colony counts were normalized to 0.1 g of tissue based on the average mass of one MoneyMaker-PtoS cotyledon (data not shown) | ||||||||
4Adjusted per mL based on volume plated |
Table 1: Sample calculations for seedling bacterial growth assay. Sample calculations demonstrate how to normalize bacterial counts and determine log bacterial growth.
Step 11.3 of the Protocol section was updated from:
to:
Figure 4 in the Protocol section was updated from:
Figure 4: Schematic representation of expected phenotypes for seedling resistance and death in various genetic backgrounds. (A) Seedlings of Rio Grande-PtoR and the near-isogenic cultivar Rio Grande-PtoS are displayed 7 days after flooding with PstDC3000 (OD600 = 0.005) + 0.015% surfactant. Rio Grande-PtoR displays consistent resistance, and Rio Grande-PtoS displays consistent susceptibility to infection with PstDC3000. These lines give rise to discrete and binary phenotypes. (B) Seedlings of a wild accession, such as Solanum neorickii LA1329, are shown 10 days after flooding with PstT1 (OD600 = 0.0075) + 0.015% surfactant. Seedlings display phenotypic variability but were recorded as binary phenotypes. The amount of phenotypic variability and the method of phenotyping (binary resistance or resistance spectrum) will depend on the particular accession tested. (C) Mapping populations generated by outcrossing wild accessions to susceptible cultivars may display a wider spectrum of phenotypes in F2 segregating populations. In this case, it may be most appropriate to record seedling phenotypes on a spectrum. Highly susceptible seedlings from a mapping population may be phenotyped for death as early as day 7 when flooded with PstT1, and typically show a brown apical meristem, no to very little extension of the epicotyl, and no new, green vegetative growth. The apical meristem of susceptible seedlings may stay green or very light brown for more time, and there may be some extension of the epicotyl and very little vegetative growth, which turns brown and arrests by day 10. Individual seedlings can be phenotyped for resistance based on the amount of new and ongoing vegetative growth by day 14. Seedlings can then be grouped based on the phenotypes described above into different categories of resistance such as weak, medium, or strong resistance. Please click here to view a larger version of this figure.
to:
Figure 4: Schematic representation of expected phenotypes for seedling resistance and death in various genetic backgrounds. (A) Seedlings of Rio Grande-PtoR and the near-isogenic cultivar Rio Grande-PtoS are displayed 7 days after flooding with PstDC3000 (OD600 = 0.005) + 0.015% surfactant. Rio Grande-PtoR displays consistent resistance, and Rio Grande-PtoS displays consistent susceptibility to infection with PstDC3000. These lines give rise to discrete and binary phenotypes. (B) Seedlings of a wild accession, such as Solanum neorickii LA1329, are shown 10 days after flooding with Pst19 (OD600 = 0.0075) + 0.015% surfactant. Seedlings display phenotypic variability but were recorded as binary phenotypes. The amount of phenotypic variability and the method of phenotyping (binary resistance or resistance spectrum) will depend on the particular accession tested. (C) Mapping populations generated by outcrossing wild accessions to susceptible cultivars may display a wider spectrum of phenotypes in F2 segregating populations. In this case, it may be most appropriate to record seedling phenotypes on a spectrum. Highly susceptible seedlings from a mapping population may be phenotyped for death as early as day 7 when flooded with Pst19, and typically show a brown apical meristem, no to very little extension of the epicotyl, and no new, green vegetative growth. The apical meristem of susceptible seedlings may stay green or very light brown for more time, and there may be some extension of the epicotyl and very little vegetative growth, which turns brown and arrests by day 10. Individual seedlings can be phenotyped for resistance based on the amount of new and ongoing vegetative growth by day 14. Seedlings can then be grouped based on the phenotypes described above into different categories of resistance such as weak, medium, or strong resistance. Please click here to view a larger version of this figure.
The second paragraph of the Representative Results section was updated from:
Phenotypic screening of wild accessions using the seedling resistance assay
Figure 6 shows representative results for seedlings of susceptible and resistant accessions 10–14 days after flooding with PstT1. Susceptible accessions include RG-PtoR, S. pimpinellifolium LA1375, and S. pimpinellifolium LA1606, and resistant accessions include S. neorickii LA1329. Ten-day-old seedlings were flooded with 10 mM MgCl2 + 0.015% surfactant as a negative control, and PstT1 at an optical density of 0.0075 + 0.015% surfactant. The seedlings were phenotyped at least 10 days after flooding, as PstT1-infected seedlings died more slowly than PstDC3000-infected seedlings. Mock-inoculated seedlings were green, healthy, and actively growing. This control is important to ensure that the accessions are not sensitive to the concentration of surfactant, and to ensure there is no bacterial contamination. Susceptible accessions (Rio Grande-PtoR [n = 7], S. pimpinellifolium LA1375 [n = 7], and S. pimpinellifolium LA1606 [n = 5]) were dead, had brown apical meristems, and lacked new growth 10–14 days after inoculation with PstT1. In contrast, two S. neorickii LA1329 (n = 3) seedlings displayed a high level of new, green growth and survived infection with PstT1 (Figure 6). Three LA1329 seedlings did not germinate. Typically, 5–7 individuals were screened for each accession in a primary screen to determine the prevalence of resistance in the population. When a more genetically complex wild accession, such as LA1329, is flooded with PstT1, the resistance phenotypes display slightly more variability among individual seedlings, compared to Moneymaker-PtoR treated with PstDC3000. However, the resistance phenotypes were usually less variable than those seen in F2 mapping populations. Thus, binary phenotyping criteria was used for LA1329.
to:
Phenotypic screening of wild accessions using the seedling resistance assay
Figure 6 shows representative results for seedlings of susceptible and resistant accessions 10–14 days after flooding with Pst19. Susceptible accessions include RG-PtoR, S. pimpinellifolium LA1375, and S. pimpinellifolium LA1606, and resistant accessions include S. neorickii LA1329. Ten-day-old seedlings were flooded with 10 mM MgCl2 + 0.015% surfactant as a negative control, and Pst19 at an optical density of 0.0075 + 0.015% surfactant. The seedlings were phenotyped at least 10 days after flooding, as Pst19-infected seedlings died more slowly than PstDC3000-infected seedlings. Mock-inoculated seedlings were green, healthy, and actively growing. This control is important to ensure that the accessions are not sensitive to the concentration of surfactant, and to ensure there is no bacterial contamination. Susceptible accessions (Rio Grande-PtoR [n = 7], S. pimpinellifolium LA1375 [n = 7], and S. pimpinellifolium LA1606 [n = 5]) were dead, had brown apical meristems, and lacked new growth 10–14 days after inoculation with Pst19. In contrast, two S. neorickii LA1329 (n = 3) seedlings displayed a high level of new, green growth and survived infection with Pst19 (Figure 6). Three LA1329 seedlings did not germinate. Typically, 5–7 individuals were screened for each accession in a primary screen to determine the prevalence of resistance in the population. When a more genetically complex wild accession, such as LA1329, is flooded with Pst19, the resistance phenotypes display slightly more variability among individual seedlings, compared to Moneymaker-PtoR treated with PstDC3000. However, the resistance phenotypes were usually less variable than those seen in F2 mapping populations. Thus, binary phenotyping criteria was used for LA1329.
Figure 6 in the Representative Results section was updated from:
Figure 6: Phenotypic characterization of resistance or disease symptoms 10–14 days post-infection in wild accessions. Rio Grande-PtoR, S. pimpinellifolium LA1606, S. pimpinellifolium LA1375 and S. neorickii LA1329 tomato seedlings were grown on 0.5x MS plates for 10 days, and then flooded with PstT1 (OD600 = 0.0075) + 0.015% surfactant. The number of surviving seedlings for each wild accession out of the total number tested is shown. Scale bar = 1 cm. Please click here to view a larger version of this figure.
to:
Figure 6: Phenotypic characterization of resistance or disease symptoms 10–14 days post-infection in wild accessions. Rio Grande-PtoR, S. pimpinellifolium LA1606, S. pimpinellifolium LA1375 and S. neorickii LA1329 tomato seedlings were grown on 0.5x MS plates for 10 days, and then flooded with Pst19 (OD600 = 0.0075) + 0.015% surfactant. The number of surviving seedlings for each wild accession out of the total number tested is shown. Scale bar = 1 cm. Please click here to view a larger version of this figure.
The third paragraph of the Representative Results section was updated from:
Quantitative assessment of bacterial growth using the seedling flood assay
To confirm that the observed resistance in LA1329 to PstT1 resulted in lower bacterial growth, bacterial growth assays were carried out in tomato seedlings. The level of PstT1 growth in Moneymaker-PtoS and S. neorickii LA1329 was determined 4 days post-infection. Moneymaker-PtoS is a near-isogenic line with consistent susceptibility among individual seedlings. Wild accessions such as S. neorickii LA1329 are often more genetically complex. LA1329 displays approximately 60% resistance to PstT1 across the population22. Because seedlings may drop their cotyledons after infection, one seedling was grown on each plate to correlate bacterial growth in the harvested cotyledon with overall seedling survival or death as determined phenotypically at least 10 days after flooding. The bacterial counts on day 4 for each seedling were normalized to 0.01 g of tissue and converted to log growth (CFU/0.01 g(log10)). Log growth for phenotypically resistant LA1329 seedlings (LA1329RES) or phenotypically susceptible seedlings (LA1329SUS) were separately pooled and compared to each other and the susceptible cultivar Moneymaker-PtoS. For example, there was a 1.7 log difference in bacterial growth between LA1329RES (log 6.3) and LA1329SUS (log 8.0), and a 1.6 log difference between LA1329RES (log 6.3) and Moneymaker-PtoS (log 7.9) (Figure 7). Therefore, phenotypic resistance correlated with quantitative resistance in the seedling assays.
to:
Quantitative assessment of bacterial growth using the seedling flood assay
To confirm that the observed resistance in LA1329 to Pst19 resulted in lower bacterial growth, bacterial growth assays were carried out in tomato seedlings. The level of Pst19 growth in Moneymaker-PtoS and S. neorickii LA1329 was determined 4 days post-infection. Moneymaker-PtoS is a near-isogenic line with consistent susceptibility among individual seedlings. Wild accessions such as S. neorickii LA1329 are often more genetically complex. LA1329 displays approximately 60% resistance to Pst19 across the population22. Because seedlings may drop their cotyledons after infection, one seedling was grown on each plate to correlate bacterial growth in the harvested cotyledon with overall seedling survival or death as determined phenotypically at least 10 days after flooding. The bacterial counts on day 4 for each seedling were normalized to 0.01 g of tissue and converted to log growth (CFU/0.01 g(log10)). Log growth for phenotypically resistant LA1329 seedlings (LA1329RES) or phenotypically susceptible seedlings (LA1329SUS) were separately pooled and compared to each other and the susceptible cultivar Moneymaker-PtoS. For example, there was a 1.7 log difference in bacterial growth between LA1329RES (log 6.3) and LA1329SUS (log 8.0), and a 1.6 log difference between LA1329RES (log 6.3) and Moneymaker-PtoS (log 7.9) (Figure 7). Therefore, phenotypic resistance correlated with quantitative resistance in the seedling assays.
Figure 7 in the Representative Results section was updated from:
x
Figure 7: Resistant Solanum neorickii LA1329 seedlings support lower bacterial growth than Moneymaker-PtoS or susceptible S. neorickii LA1329. Bacterial counts were determined 4 days post-inoculation from S. neorickii LA1329 (n = 14) and Moneymaker-PtoS (n = 10) seedlings infected with PstT1 and normalization was performed to 0.01 g of tissue. For LA1329, the two phenotypic groups, susceptible (SUS) or resistant (RES), were observed and counted separately. Above the bar * = statistically significant difference determined by a one-factor analysis of variance. A general linear model procedure (p < 0.001) followed by a multiple comparison of means using Tukey's post hoc test was used. Error bars = standard error. The figure indicates one representative experiment. Please click here to view a larger version of this figure.
x
Figure 7: Resistant Solanum neorickii LA1329 seedlings support lower bacterial growth than Moneymaker-PtoS or susceptible S. neorickii LA1329. Bacterial counts were determined 4 days post-inoculation from S. neorickii LA1329 (n = 14) and Moneymaker-PtoS (n = 10) seedlings infected with Pst19 and normalization was performed to 0.1 g of tissue. For LA1329, the two phenotypic groups, susceptible (SUS) or resistant (RES), were observed and counted separately. Above the bar * = statistically significant difference determined by a one-factor analysis of variance. A general linear model procedure (p < 0.001) followed by a multiple comparison of means using Tukey's post hoc test was used. Error bars = standard error. The figure indicates one representative experiment. Please click here to view a larger version of this figure.
The first paragraph of the Discussion section was updated from:
A protocol for flood inoculation with PstDC3000 or PstT1 optimized to detect resistance to these bacterial strains in tomato seedlings is described. There are several critical parameters for optimal results in the seedling resistance assay, including bacterial concentration and surfactant concentration, which were empirically determined22. For PstDC3000, the optical density was optimized to achieve complete survival on a resistant cultivar containing the Pto/Prf cluster and complete death on a susceptible cultivar lacking the Pto/Prf cluster22. For a strain such as PstT1, where there are no known resistant varieties, the optical density was optimized to be the lowest possible for consistent and complete plant death22. Uppalapati et al.24 designed a tomato seedling assay to investigate the pathogenesis of PstDC3000 and the virulence function of coronatine. In this virulence assay, infections were performed using bacteria concentrated to an OD600 of 0.124, 20x higher than the optical density of strains used in our resistance assay. Recognition of PstDC3000 effectors AvrPto and AvrPtoB in tomato seedlings carrying the Pto/Prf gene cluster results in ETI and a macroscopic HR22. In the context of a strong immune response such as ETI, a lower bacterial titer was used for PstDC3000 to avoid overwhelming genetic resistance from the Pto/Prf gene cluster22. In addition, these results suggest that a high bacterial concentration could overwhelm weaker immune responses such as PTI or quantitative partial resistance, where multiple genes contribute to the overall phenotype. Surfactant is necessary for the bacteria to adhere to the leaf surface; however, high concentrations can cause chlorosis of the leaf22. We previously tested a range of surfactant concentrations to empirically determine the ideal concentration in 10-day-old tomato seedlings22. When testing new species that may differ in their sensitivity to surfactant, the surfactant concentration should be optimized to identify a concentration that does not cause damage or chlorosis in the absence of bacteria. Appropriate assay conditions will require optimization of a surfactant concentration that does not cause damage, and a bacterial concentration that causes disease in all susceptible controls.
to:
A protocol for flood inoculation with PstDC3000 or Pst19 optimized to detect resistance to these bacterial strains in tomato seedlings is described. There are several critical parameters for optimal results in the seedling resistance assay, including bacterial concentration and surfactant concentration, which were empirically determined22. For PstDC3000, the optical density was optimized to achieve complete survival on a resistant cultivar containing the Pto/Prf cluster and complete death on a susceptible cultivar lacking the Pto/Prf cluster22. For a strain such as Pst19, where there are no known resistant varieties, the optical density was optimized to be the lowest possible for consistent and complete plant death22. Uppalapati et al.24 designed a tomato seedling assay to investigate the pathogenesis of PstDC3000 and the virulence function of coronatine. In this virulence assay, infections were performed using bacteria concentrated to an OD600 of 0.124, 20x higher than the optical density of strains used in our resistance assay. Recognition of PstDC3000 effectors AvrPto and AvrPtoB in tomato seedlings carrying the Pto/Prf gene cluster results in ETI and a macroscopic HR22. In the context of a strong immune response such as ETI, a lower bacterial titer was used for PstDC3000 to avoid overwhelming genetic resistance from the Pto/Prf gene cluster22. In addition, these results suggest that a high bacterial concentration could overwhelm weaker immune responses such as PTI or quantitative partial resistance, where multiple genes contribute to the overall phenotype. Surfactant is necessary for the bacteria to adhere to the leaf surface; however, high concentrations can cause chlorosis of the leaf22. We previously tested a range of surfactant concentrations to empirically determine the ideal concentration in 10-day-old tomato seedlings22. When testing new species that may differ in their sensitivity to surfactant, the surfactant concentration should be optimized to identify a concentration that does not cause damage or chlorosis in the absence of bacteria. Appropriate assay conditions will require optimization of a surfactant concentration that does not cause damage, and a bacterial concentration that causes disease in all susceptible controls.
The third paragraph of the Discussion section was updated from:
Pst is a foliar pathogen that preferentially colonizes the aerial parts of tomato seedlings, including the cotyledons24 (Figure 3). Therefore, qualitative phenotyping in the seedling flood assay focuses on growth and disease symptoms in aerial portions of the seedling, and tissue for the bacterial growth assay is sampled from the cotyledons for quantitative analysis. After flood inoculation, seedlings may die within 7–10 days after inoculation with PstDC3000 or 10–14 days after inoculation with PstT1, as discussed in section 11. Seedling death is visualized by a brown apical meristem, arrested epicotyl elongation, and/or arrested vegetative growth. If different bacterial strains are used, the timing will have to be empirically determined. In addition, the progression of disease on control plants should be monitored daily after flooding until a consistent time frame from the onset of disease symptoms to seedling death can be identified. Depending on the genotypes and treatments used in the flood assay, seedling phenotypes can be recorded as binary phenotypes or on a disease spectrum (Figure 4). A broader spectrum of phenotypes may be observed when flood inoculating F2 mapping populations from wild tomato accessions crossed to susceptible cultivars (Figure 4C). It may be best to phenotype segregating populations on a disease spectrum depending on how quickly the seedling dies and the degree of new vegetative growth and branching (Figure 4C). The seedling flood assay can also be used in conjunction with the seedling bacterial growth assay to quantitatively assess levels of bacterial growth associated with qualitative phenotypes in individual seedlings (Figure 7). Very large reductions (i.e., ~log 3) in bacterial growth or strong resistance in resistant seedlings of a wild accession compared to a susceptible cultivar suggest that the underlying genetic basis of resistance may be due to ETI22. Smaller reductions in bacterial growth (i.e., ~log 1.7), as observed in LA1329 seedlings, may be due to the contribution of weaker resistance from quantitative trait loci and/or PTI. Thus, the seedling growth assay can be an important tool in further characterizing resistance in wild tomato lines.
to:
Pst is a foliar pathogen that preferentially colonizes the aerial parts of tomato seedlings, including the cotyledons24 (Figure 3). Therefore, qualitative phenotyping in the seedling flood assay focuses on growth and disease symptoms in aerial portions of the seedling, and tissue for the bacterial growth assay is sampled from the cotyledons for quantitative analysis. After flood inoculation, seedlings may die within 7–10 days after inoculation with PstDC3000 or 10–14 days after inoculation with Pst19, as discussed in section 11. Seedling death is visualized by a brown apical meristem, arrested epicotyl elongation, and/or arrested vegetative growth. If different bacterial strains are used, the timing will have to be empirically determined. In addition, the progression of disease on control plants should be monitored daily after flooding until a consistent time frame from the onset of disease symptoms to seedling death can be identified. Depending on the genotypes and treatments used in the flood assay, seedling phenotypes can be recorded as binary phenotypes or on a disease spectrum (Figure 4). A broader spectrum of phenotypes may be observed when flood inoculating F2 mapping populations from wild tomato accessions crossed to susceptible cultivars (Figure 4C). It may be best to phenotype segregating populations on a disease spectrum depending on how quickly the seedling dies and the degree of new vegetative growth and branching (Figure 4C). The seedling flood assay can also be used in conjunction with the seedling bacterial growth assay to quantitatively assess levels of bacterial growth associated with qualitative phenotypes in individual seedlings (Figure 7). Very large reductions (i.e., ~log 3) in bacterial growth or strong resistance in resistant seedlings of a wild accession compared to a susceptible cultivar suggest that the underlying genetic basis of resistance may be due to ETI22. Smaller reductions in bacterial growth (i.e., ~log 1.7), as observed in LA1329 seedlings, may be due to the contribution of weaker resistance from quantitative trait loci and/or PTI. Thus, the seedling growth assay can be an important tool in further characterizing resistance in wild tomato lines.
The fourth paragraph of the Discussion section was updated from:
Typically, genetic screens have been performed on four- to five-week-old adult tomato plants to identify the genetic basis of P. syringae resistance in wild accessions20,21. Adult tomato plants require much longer growth times, require more space in the growth chamber, and are much larger plants, which means that usually few individuals are screened for each line. The seedling flood assay provides a powerful, alternative approach in the identification of P. syringae resistance in wild tomato accessions. Screening at the seedling stage permits a large sample size to be tested which can be particularly advantageous in detecting resistance in genetically complex populations. Reduced growth chamber space requirements and growth time facilitate a high-throughput approach and rapid detection of natural resistance in wild accessions to emerging pathogens. Furthermore, P. syringae resistance that was identified at the seedling stage in this assay is not restricted to the developmental stage. S. neorickii LA1329 and S. habrochaites LA1253 were initially identified at the seedling stage and also display resistance to PstT1 in adult plants as previously described22.
to:
Typically, genetic screens have been performed on four- to five-week-old adult tomato plants to identify the genetic basis of P. syringae resistance in wild accessions20,21. Adult tomato plants require much longer growth times, require more space in the growth chamber, and are much larger plants, which means that usually few individuals are screened for each line. The seedling flood assay provides a powerful, alternative approach in the identification of P. syringae resistance in wild tomato accessions. Screening at the seedling stage permits a large sample size to be tested which can be particularly advantageous in detecting resistance in genetically complex populations. Reduced growth chamber space requirements and growth time facilitate a high-throughput approach and rapid detection of natural resistance in wild accessions to emerging pathogens. Furthermore, P. syringae resistance that was identified at the seedling stage in this assay is not restricted to the developmental stage. S. neorickii LA1329 and S. habrochaites LA1253 were initially identified at the seedling stage and also display resistance to Pst19 in adult plants as previously described22.
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены