JoVE Logo
Faculty Resource Center

Sign In

Light-Induced Dielectrophoresis for Characterizing the Electrical Behavior of Human Mesenchymal Stem Cells

DOI :

10.3791/64909-v

10:08 min

June 16th, 2023

June 16th, 2023

1,174 Views

1Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, 2Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, 3Department of Chemistry, School of Physical Sciences, University of California, Irvine, 4Sue & Bill Gross Stem Cell Research Center, University of California, Irvine

Here, we present light-induced dielectrophoresis as a label-free approach for characterizing heterogeneous cell lines, specifically human mesenchymal stem cells (hMSCs). This paper describes a protocol for using and optimizing a microfluidic device with a photoconductive layer to characterize the electrical behavior of hMSCs without altering their native state.

Tags

Light induced Dielectrophoresis

-- Views

Related Videos

article

Alginate Microcapsule as a 3D Platform for Propagation and Differentiation of Human Embryonic Stem Cells (hESC) to Different Lineages

article

Microbial Control and Monitoring Strategies for Cleanroom Environments and Cellular Therapies

article

Quantitative Characterization of Liquid Photosensitive Bioink Properties for Continuous Digital Light Processing Based Printing

article

Soybean Hairy Root Transformation for the Analysis of Gene Function

article

In Vitro Selection of Engineered Transcriptional Repressors for Targeted Epigenetic Silencing

article

Author Spotlight: Advances in Evaluating Human Lung Epithelial Cells' Response to Metal-Organic Frameworks

article

Methods for Electroporation and Transformation Confirmation in Limosilactobacillus reuteri DSM20016

article

Author Spotlight: Advancing Eye Physiology Research via a Multi-Channel Flow Culture for Optimal Tissue Maintenance and Real-Time Assessment

article

Author Spotlight: Advancing Coral Culture — Creating a Semi-Quantitatively Controlled Microenvironment System to Counter Current Limitations

article

Author Spotlight: EasyFlow – An Economical and Adaptable Perfusion Bioreactor for Large Blood Vessel Culture

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved