JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

A protocol is provided to use an Open Field Maze to access general locomotor activity, anxiety and emotionality in a laboratory mouse model.

摘要

Animal models have proven to be invaluable to researchers trying to answer questions regarding the mechanisms of behavior. The Open Field Maze is one of the most commonly used platforms to measure behaviors in animal models. It is a fast and relatively easy test that provides a variety of behavioral information ranging from general ambulatory ability to data regarding the emotionality of the subject animal. As it relates to rodent models, the procedure allows the study of different strains of mice or rats both laboratory bred and wild-captured. The technique also readily lends itself to the investigation of different pharmacological compounds for anxiolytic or anxiogenic effects. Here, a protocol for use of the open field maze to describe mouse behaviors is detailed and a simple analysis of general locomotor ability and anxiety-related emotional behaviors between two strains of C57BL/6 mice is performed. Briefly, using the described protocol we show Wild Type mice exhibited significantly less anxiety related behaviors than did age-matched Knock Out mice while both strains exhibited similar ambulatory ability.

引言

The Open Field Maze (OFM) was initially developed in 1934 as a test to measure emotionality in rodents1. It has attained the status of being one of the most widely used measures of behavior in animal psychology2. It provides an easy and fairly rapid assessment of well-defined behaviors requiring no training to the test subject and little to no specialized training for the human administering the test. These attributes have led to wide-spread use of the open field maze in research extended to other animal species such as calves, pigs, rabbits, primates, honeybees and lobsters3. Part of its popularity arises from the fact that the psychological and physiological concepts underlying the tests are generally straight-forward and well understood. For example, it has been postulated that evolutionary forces have selected for a common response in animals such that most species display anxiety-mediated fear or flight responses to specific stimuli. Rodents for example, show distinct aversions to large, brightly lit, open and unknown environments4. We can assume they have been phylogenetically conditioned to see these types of environments as dangerous. All of these features are incorporated in the open field maze and form the basis of its use in behavioral paradigm testing.

An open field maze consists of a wall-enclosed area that is of sufficient height to prevent the subject from escaping. Typical maze shapes are circular or square with an area large enough, based on the size of the subject tested, to elicit a feeling of openness in the center of the maze. A number of variables can be scored in the open field maze with most parameters involving differing types of motor activity2. Ambulation is the most common behavior studied but others such as latency or rearing can also be measured. Most often, rodent behavior is analyzed in a bare maze. However, the addition of objects, either one or many to the maze floor, adds the ability to see how the subject interacts with novel additional stimuli2. Relevant parameters when objects are presented are typically the number of approaches to an object or in some cases, preference or aversion for one object over another.

Many behavioral tests of anxiety are based on the subject animal’s body activity and locomotion5. Interpreting behavioral tests for emotionality while separating non-emotional confounding factors, such as motor activity, has been the subject of intense debate6,7. As the OFM was originally described, two measures of emotionality can be deduced, locomotor activity and fecal boli deposits or defecation1. However, these two measures have been shown in some studies to be unrelated supporting the conclusion that emotionality in rodents is multidimensional5. Regardless, discrepancies in the literature regarding these measures and emotionality or anxiety in mouse models may be attributed to differences in analysis criteria or differences in testing procedures. Studies have conclusively linked results from OFM analysis with other measures of anxiety when comparing mouse models8.

研究方案

注:此处进行的所有手术均由IACUC(研究合规办公室)提交给批准,并进行以下NIH的指导方针。在行为测试模式用于小鼠幼稚,不用于其他测试。的C57BL / 6野生型和敲除小鼠在此协议中使用先前已被描述图9和这里介绍的数据是从该手稿。

1.准备的检测室和开放现场设备

  1. 使用多单元旷场迷宫(OFM)包括四个活动室中被用于此分析( 图1)。每个腔室测定50厘米(长)×50厘米(宽)×38厘米(高度),并从白色高密度和非多孔塑料被做。
  2. 走动期间质感迷宫为牵引的地板,而迷宫墙壁光滑。迷宫象限是完全空了本次测试的目的。在审议这一原的其余部分栏,上述的迷宫的单个象限会被利用来演示OFM。
  3. 擦拭室在使用前95%的乙醇和之前随后的测试,以除去由先前对象小鼠左任何气味线索。
  4. 允许乙醇完全蒸发之前,测试小鼠。这可能需要每个测试环节之间的5-10分钟。
  5. 为了便于分析,使用SMART视频跟踪软件PanLab /哈佛仪器来记录和评估鼠标移动。
    注意:任何商用视频跟踪摄像机和软件可以被用来跟踪测试受试者和评估从开启字段迷宫结果。这是非常重要的是,最终用户要了解如何校准和运行用于每个单独的分析软件。不管摄像机和用来跟踪软件的,当相机和软件根据制造商的说明被正确校准得到最好的结果。
  6. 执行测试我适用标准昏暗的房间能容纳迷宫设备和运行软件所需的计算机。或者通过将其连接到在天花板上,或使用任何升高的支持系统,它允许照相机的镜头看到整个迷宫区域( 图2)暂停所述视频摄像机的迷宫上方。
  7. 由于人类管理员的考验,一定要在房间足够的空间是在迷宫测试科目完全不可见,以免影响小鼠的行为。

2.准备软件测量活动

  1. 打开视频跟踪软件。
  2. 一旦软件被打开,将光标移动到位于"数据采集"选项卡,只需单击打开此选项下的"单对象跟踪"选项。
  3. 选择位于屏幕底部的"静态背景"选项。
  4. 选择后,"静态背景"的选择N,有必要使用软件采取迷宫的图像之前加入的测试对象。要做到这一点,将光标移动到"照片"按钮位于屏幕,只需点击一下下方。
    注:该软件将利用场景的一个图象,而不测试受试者将被从在跟踪处理拍摄的图像中减去。这导致仅被检体的运动由软件进行分析。
  5. 确认上述拍摄的背景图像完全被跟踪软件通过移动光标到"测试"按钮位于屏幕的底部,并点击一次取出。固体白场将被显示,如果背景图像从跟踪图像完全除去。如果照明条件发生变化或迷宫被意外移动,你会看到在这个领域黑"阴影",表示两个图像不完全一致。为了改变这种情况,只需重复STE上面的P 2.4。
  6. 确认的背景设置后,使用时间选项来配置采集过程中时间控制的方式。要做到这一点,将光标移动到"配置"选项卡并单击一次"计时"的标题。使用新打开的窗口进入实验参数。
  7. 对于这个协议,选择了"设定时间"选项,因为10分钟的跟踪期。设置了"延迟期",5秒,以允许用户的时间来将鼠标在迷宫的中心,并事先以跟踪的起始搬走。进入10分钟的"采集时间"为测试的持续时间。将"停止控制"设置为"当设定的时间(10分钟)结束",这将自动关闭摄像头和软件的跟踪功能。
  8. 将光标移动到"关闭"按钮后,所有的计时已设置为关闭该窗口。你现在就可以开始测试荷兰国际集团的过程。

3.管理的开放式现场测试

注:在本协议中所使用的软件允许多达16个独立的小鼠的跟踪一次。为便于完成并且如上所述,这里所讨论的协议是使用OFM的单个象限一个鼠标。在使用这种协议的设备,最多4个独立的小鼠可以用迷宫的每个象限进行跟踪。如果利用多机箱迷宫,将第一对象小鼠在其定义的象限后,将剩余的小鼠成各自的迷宫象限用于跟踪分析。对于该协议的目的,进一步说明将具体到迷宫的单象限。

  1. 从他们的住房房间带入考场带来老鼠在他们的家笼。允许小鼠之前适应的程序空间最少30分钟以开始测试。
  2. 删除单个米轻轻抓住它的尾巴从家笼乌斯和鼠标放置在野外露天迷宫的中间,而同时启动由单一的点击SMART软件上的开始按钮,开始跟踪鼠标移动。这是正常的鼠标快速移动到迷宫的外围墙壁和释放的时间和跟踪鼠标捕获应一致,以记录这个动作。
  3. 允许在整个迷宫的各象限中的对象小鼠的自由和不间断运行为一个10分钟的时间,在此期间,跟踪软件将记录的运动( 图3)。
  4. 在测试期结束时,拿起对象小鼠轻轻,从迷宫中取出,并将其返回到其家笼中。
  5. 前清洗迷宫,目视计数存在于迷宫粪便博利粒料和手动记录号码进行进一步的分析。
  6. 删除所有粪粒,并擦干净排尿所有景点。喷地板与迷宫象限用95%乙醇的壁并用干净的纸巾擦拭。让乙醇溶液测试其他老鼠之前完全干燥。
  7. 下一个鼠标重复此过程。

4.测量与行为分析在测试过程

注:对于测量,露地行为三个方面使用该协议(见讨论)容易表征。关于如何访问视频追踪软件这些测量结果的简要说明如下。

  1. 从SMART软件的主界面,将光标移动到"区"选项卡,只需单击"定义",打开区编辑器。
  2. 按照SMART软件用户手册中的详细说明,也定义区域或网格叠加的跟踪路径。这里,该软件被用来定义一个5×5网格10厘米的正方形覆盖迷宫的地板( 的图4)。一定要创建的区域文件保存关闭区编辑之前。
  3. 从SMART软件的主界面,将光标移动到"分析"选项卡和单单击打开数据分析窗口。
  4. 将光标移动到"文件"选项卡,然后打开上面创建的区域文件。
  5. 将光标移动到"配置"选项卡,打开"轨迹分析"选项。这将打开"单科分析配置"窗口。
    1. 将光标移动到"标准"选项卡,并从可用参数框(左侧)将"旅行描述休闲,距离"参数设置为包含参数框(右侧)。
    2. 将光标移动到"过渡区"选项卡,将所有适当的参数包括该参数框上面。
    3. 确保"全田径"框在窗口底部检查。
    4. 莫已经光标到OK按钮并关闭单科分析配置窗口。
      注:根据您要进行分析,许多其他的选择可以在该窗口中选择从分析挖掘数据。看了你的具体方案的详细用户手册,以确定哪些参数是为您的数据分析最重要的。
  6. 在程序窗口的左上角的文件选项卡,打开单科轨道窗口,放置一个复选标记旁边正在分析所有曲目。将光标移动到复选标记按钮,​​在窗口的顶部,然后单击关闭轨道资源管理器窗口。
  7. 将光标移动到数据分析窗口中的"开始"按钮,然后点击一个启动轨道数据进行分析。
  8. 分析数据可以作为任一ASCII文本文件输出,或者它可以直接导出到Excel电子表格。使用软件程序正在使用的输出工具来输出达TA供自己使用。
    注:总行驶距离和时间,指示区花费将输出以下以上概述的数据的分析步骤。再次,应当强调的是该步骤以达到这些测量此处表示将根据所使用的用户软件不同。但数据本身和结果的解释应该是相似的使用的软件程序无关。还值得一提的是,测试管理员偏压从该协议作为所有收集的定量由软件而不是管理员测量数据中的数据中删除。因此没有qualifiable元件到所述收集的数据。

结果

每在大多数情况下,测试小鼠的品系的个体的平均数目是约20,以产生足够的统计相关性。然而,该数量可以在8-30的范围内根据对小鼠的可用性。根据所需要的测量或比较,它也有利于使用年龄匹配的主题。

第一,可以说是最重要的具体的参数在田野迷宫来衡量的总门诊距离。同时测量单位无关为比较目的,它是最经常表达为公制测量(厘米)。在这里( 图5)?...

讨论

旷场迷宫是在动物行为学研究中最广泛使用的平台之一。一些重要的常规和行为学参数2,4可以收集和OFM的表现时进行分析。这些数据允许研究者测量行为,从整体运动活性焦虑有关的情感行为8。然而,使用OFM的也不是没有缺点。一个混杂的问题是大范围可以在任何测试期间被操纵的静态变量。例子包括时间,照明条件和新的物体包容。变异性在实验方案的设置和设计,这是必要?...

披露声明

The authors have nothing to disclose.

致谢

This work was supported by The National Institute of Health (NIH-2RO1NS033661) and by the Alabama Agricultural Experiment Station (HATCH ALA021-1-09017).

材料

NameCompanyCatalog NumberComments
Multi Unit Open Field TestSan Diego Instruments, Inc.White 7001-0354Any single or multi unit open field maze can be used
SMART DT Tracking SoftwarePanLab/Harvard Apparatus76-0695Any tracking software can be utilized with this protocol
Sony 990x Video Camera RecorderSonyCCD-TRV328Any suitable video camera can be attached to computer for recording tracking profiles.

参考文献

  1. Hall, C. S. Emotional behavior in the rat: defecation and urination as measures of individual differences in emotionality. J. Comp. Psychol. 18, 385-403 (1934).
  2. Walsh, R. N., Cummins, R. A. The open field test: a critical review. Psychol. Bull. 83, 482-504 (1976).
  3. Prut, L., Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. of Pharm. 463, 3-33 (2003).
  4. Choleris, E., Thomas, A. W., Kavaliers, M., Prato, F. S. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazpoxide and an extremely low frequency pulsed magnetic field. Neurosci. Biobehav. Rev. 25, 235-260 (2001).
  5. Ramos, A. Animal Models of anxiety: do I need multiple tests. TIPS. 29, 493-498 (2008).
  6. Archer, J. Tests for emotionality in rats and mice: a review. Anim. Behav. 21, 205-235 (1973).
  7. Gray, J. A. Emotionality in male and female rodents: a reply to Archer. Brit. J. Psych. 70, 425-440 (1979).
  8. Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., Renzi, P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behavior in inbred mice. Behav. Brain Res. 134, 49-57 (2002).
  9. Ramesh Babu, J., Seibenhener, M. L., Peng, J., Strom, A. L., Kemppainen, R., Cox, N., Zhu, H., Wooten, M. C., Diaz-Meco, M. T., Moscat, J., Wooten, M. W. Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J. Neurochem. 106, 107-120 (2008).
  10. Simon, P., Dupuis, R., Costentin, J. Thigmotaxis as an index of anxiety in mice: influence of dopaminergic transmissions. Behav. Brain Res. 61, 59-64 (1994).
  11. Denenberg, V. H. Open-field behavior in the rat: what does it mean. Ann. N.Y. Acad. Sci. 159, 852-859 (1969).
  12. Stanford, S. C. The open field test: reinventing the wheel. J. Psychopharm. 21, 134-135 (2007).
  13. Ennaceur, A. Tests of unconditional anxiety – pitfalls and disappointments. J. Phys. Behav. 135, 55-71 (2014).
  14. Borta, A., Schwarting, R. K. Inhibitory avoidance, pain reactivity, and plus-maze behavior in Wistar rats with high versus low rearing activity. J. Phys. Behav. 84, 387-396 (2005).
  15. Costall, B., Jones, B. J., Kelly, M. E., Naylor, R. J., Tomkins, D. M. Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacol. Biochem. Behav. 32, 777-785 (1989).
  16. Bouwknecht, J. A., Paylor, R. Pitfalls in the interpretation of genetic and pharmacological effects on anxiety-like behavior in rodents. Behav. Pharm. 19, 385-402 (2008).
  17. Webster, D. G., Baumgardner, D. J., Dewsbury, D. A. Open field behavior in eight taxa of muriod rodents. Bull. Psychonom. Soc. 13, 90-92 (1979).
  18. Wilson, R. C., Vacek, T., Lanier, D. L., Dewsbury, D. A. Open field behavior in muroid rodents. Behav. Biol. 17, 495-506 (1976).
  19. Crawley, J. N. Behavioral phenotyping of transgenic and knockout mice: experimental designs and evaluation of general health, sensory functions, motor abilities and specific behavioral tests. Brain Res. 835, 18-26 (1999).
  20. Simon, P., Dupuis, R., Costentin, J. Thigmotaxis as an index of anxiety in mice. influence of dopaminergic transmissions. Behav. Brain Res. 61, 59-64 (1994).
  21. Miller, B. H., Schultz, L. E., Gulati, A., Su, A. I., Pletcher, M. T. Phenotypic characterization of a genetically diverse panel of mice for behavioral despair and anxiety. PLoS One. 5, e14458 (2010).
  22. Tannenbaum, B., Anisman, H. Impact of chronic intermittent challenges in stressor-susceptible and resilient strains of mice. Biol. Psych. 53, 292-303 (2003).
  23. Lister, R. G. Ethologically-based animal models of anxiety disorders. Pharmacol. Ther. 46, 321-340 (1990).
  24. Kulesskaya, N., Voikar, V. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure. Phys. Behav. 133, 30-38 (2014).
  25. Han, H., Du, W., Zhou, B., Zhang, W., Xu, G., Niu, R., Sun, Z. Effects of chronic fluoride exposure on object recognition memory and mRNA expression of SNARE complex in hippocampus of male mice. Biol. Trace Elem. Res. 158, 58-64 (2014).
  26. Barrow, P., Leconte, I. The influence of body weight on open field and swimming maze performance during the post-weaning period in the rat. Lab. Animals. 30, 22-27 (1996).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

96 Thigmotaxis

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。