细胞间的通信为内和细胞外的控制各种生理活性的关键。本文描述了测量的单细胞的分泌物的时空性质的协议。为了实现这一目标,多学科的方法是使用集成了无标记纳米等离子体激感测与活细胞成像。
Inter-cellular communication is an integral part of a complex system that helps in maintaining basic cellular activities. As a result, the malfunctioning of such signaling can lead to many disorders. To understand cell-to-cell signaling, it is essential to study the spatial and temporal nature of the secreted molecules from the cell without disturbing the local environment. Various assays have been developed to study protein secretion, however, these methods are typically based on fluorescent probes which disrupt the relevant signaling pathways. To overcome this limitation, a label-free technique is required.
In this paper, we describe the fabrication and application of a label-free localized surface plasmon resonance imaging (LSPRi) technology capable of detecting protein secretions from a single cell. The plasmonic nanostructures are lithographically patterned onto a standard glass coverslip and can be excited using visible light on commercially available light microscopes. Only a small fraction of the coverslip is covered by the nanostructures and hence this technique is well suited for combining common techniques such as fluorescence and bright-field imaging.
A multidisciplinary approach is used in this protocol which incorporates sensor nanofabrication and subsequent biofunctionalization, binding kinetics characterization of ligand and analyte, the integration of the chip and live cells, and the analysis of the measured signal. As a whole, this technology enables a general label-free approach towards mapping cellular secretions and correlating them with the responses of nearby cells.
间的蜂窝通信是对许多生理活动的内部和细胞外部的调节是至关重要的。各种蛋白质和囊泡的可分泌其随后引发复杂的细胞过程如分化,伤口愈合,免疫应答,迁移和增殖。1-5故障的细胞间信号传导途径已牵涉许多疾病,包括癌症,动脉粥样硬化和糖尿病,仅举几例。
最优细胞分泌测定应当能够在空间和时间映射感兴趣的分泌蛋白而不破坏相应信号通路。以这种方式,浓度分布和接收单元的响应之间的因果关系可以推断。不幸的是,许多的最常用的荧光为基础的技术不符合这些标准。荧光融合蛋白可以用于标记分析物瓦特ithin的细胞,而且可以破坏分泌途径,或者如果分泌,结果,其中是难以量化单元外部的扩散辉光。荧光immunosandwich基测定法是最常用的技术,用于检测蜂窝分泌物但通常需要单个细胞的分离。6-11此外,引入感测抗体的通常停止或结束实验和的抗体标签的大小, 150 kDa的对IgG,是妨碍下游信号。
这些路障,因为它是优选无标记技术被用于图像蛋白分泌物和之间现有无标记技术,表面等离子体共振(SPR)和局域型表面等离子体共振(LSPR)传感器是优良的候选12-17这些传感器已被广泛地用于蛋白,外来体和其他生物标志物的分析物结合研究。在18-24 LSPR,电浆nanostr的情况下uctures可以将光刻图案化到玻璃盖玻片,并通过标准的宽视场显微镜的配置利用可见光激发。由于它们的纳米级尺寸,大多数的玻璃基板的可用于诸如亮场和荧光显微镜使这些探针非常适用于与活细胞显微术集成常见的成像技术。25-28我们已经证明了实时测量从使用官能化金电浆纳米结构的225毫秒和10微米,分别时空分辨率杂交瘤细胞抗体的分泌物。基本芯片配置示于图1。28显微镜的输出光路被分离用于成像的CCD照相机和一个光纤光学地耦合分光计用于定量测定纳米结构的给定阵列的分数占用(图2的间)。
该protoc醇在本文提出描述了实验设计为单细胞的分泌物的实时测量,同时监测使用标准明场显微术的细胞的响应。多学科方法包括纳米结构的细胞株的制造,纳米结构为高亲合力的分析物结合的官能化,这两个最小化非特异性结合和使用商业表面等离子体共振表征动力学速率常数(SPR)仪器表面优化,集成到衬底上,并且图像和光谱数据的分析。我们预计这种技术是一种使能技术进行细胞分泌物和接收单元的因果关系的时空映射。
1.纳米结构的制备
2.芯片清洁和自组装膜中的应用
3.表面功能化和动力学特性
注意:使用在商业SPR仪器的官能化芯片与配体和分析物之间的动力学速率常数表征,以及研究的SAM非特异性b上电阻inding。有一个广泛的流量和微流体设计,以便有效的表面功能化。既然我们有市售SPR我们围绕标准化的推荐流量。我们注意到,这些流量是典型的所有SPR仪器等等都没有限制。 SPR仪器不是必须的,因为所有的官能化可以直接在LSPR芯片上进行,但它并减少我们的工作负荷,因为它是一个复用的仪器,而我们的微流体LSPR设置不。
4. LSPR常规设置
抗c-myc的分泌物9E10杂交瘤细胞5 LSPR成像
注意:用于此研究的杂交瘤细胞系表达抗c-myc的抗体组成,因此不需要化学触发
在典型的活细胞分泌研究有数据收集发生的多种模式。 图3示出了LSPRi图像,其中突出的正方形阵列的叠加,和一个透射光照明图像,突出的细胞在左下方。数据通常收集在3小时内,随后通过引入的分析物为后述的归一化计算的饱溶液。荧光图像,也可以通过一个过滤器立方体的自动切换集成到数据收集例程。 在图4染色荧光膜染料若丹明DHPE细胞呈现伪足状延伸(箭头)。如果这样的扩展是与阵列重叠,他们将得到的假阳性蛋白质分泌。有图像的多种模式可以帮助识别这种情况的发生。
图5示出前光谱数据和船尾器引入一个饱和溶液(400纳米)的商购抗c-myc的抗体与c-myc的官能化阵列。没有细胞存在于该实验。光谱显示两个红移和增加强度。两条曲线下的区域之间的差异导致在CCD摄像机上的增加,阵列图像强度LSPRi模式。甲非线性最小二乘数据分析方法已被开发来推断从光谱面结合的配体的分数而定。30,31
在实验结束时,饱和的强度值(即,分数占用≈1)被用来计算使用以下公式中的每个阵列的归一化的反应:
哪里的归一化强度在时间点t,在该实验中,最终的饱和强度的开始初始强度,并且阵列的被测强度在时间点t 分别。
从两个阵列标准化的值示于图6中。一个阵列是在10微米的细胞的受调查的同时,另外,作为对照,从一小区的距离为130微米。在最接近的阵列相对于所述控制阵列的平坦响应的单元的归一化响应的突然增加是表示一个局部突发分泌的抗体的。
图1.传感器的设计。甲绘图描绘了典型的活细胞分泌实验的几何形状的细胞(蓝色球体)沉积到LSPR芯片,其中包含的biofunctionalized金纳米结构阵列。在放大视图中,感兴趣的细胞分泌,在示出为Y形分子这种情况下的抗体,因为它们结合到表面,测量功能化纳米结构。 请点击此处查看该图的放大版本。
图2.光学设置。来自卤素灯的照明光首先由一个长通滤波器(LP)过滤。的光被线性偏振(P1)和照射经由40X / 1.4 NA物镜的样品。散射光被物镜通过交叉偏振器(P2)的收集和传递。 50/50分束器(BS)被插入到所收集的光路用于同时光谱分析和图像分析。右上:由300纳米的间距隔开9个人纳米结构的原子力显微镜图片请点击这里查看该图的放大版本。
图3.活细胞LSPRi研究。甲合并透射光和LSPRi的图象,显示了12阵列包围的单个杂交瘤细胞(左下)。这是一个对比度增强的图像。比例尺为10微米。 请点击此处查看该图的放大版本。
图4.活细胞荧光分析。沾上罗丹明DHPE,这是一种膜染料单个杂交瘤细胞的荧光假彩色图像。在荧光成像模式下的阵列通常不可见的,然而,附近的数组这里可观察到作为从头缺少方在右下角。该细胞可以被看作是从虽然触手状延伸(可能丝状伪足或者伪足)向外从细胞(箭头)延伸的所述阵列分离。比例尺为10微米。 请点击此处查看该图的放大版本。
图5.频谱形态。之前和引进抗c-myc基因抗体的400纳米的解决方案后,从c-myc基因功能化的阵列获得的光谱。无细胞存在于这项研究。 请点击此处查看该图的放大版本。
图6.单细胞分泌的影响。位于15μm的单细胞的和一个位于130微米远(控制)的阵列的响应。比例尺为10微米。 请点击此处查看该图的放大版本。
The LSPR imaging technique described in this work has numerous advantages over more traditional methodologies for detecting cell secretions. First, the time resolution of our technique is on the order of seconds whereas the commercial alternative, an immunosandwhich assay known as EliSpot, has a typical time resolution of 2 to 3 days.7,32 As a result we were able to resolve sudden changes in the rate of protein secretion, such as that shown in Figure 6. Second, having arrays distributed over the chip allows for the secreted signal to be tracked in space and time which enables more rigorous comparisons to diffusion-based models of cell secretion. In addition, arrays like the control array shown in Figure 6 can be used to subtract out global changes in the image that typically arise from instrumental factors such as focus drift. Third, our technique requires no modification of the cells. If desired, the experiment can incorporate commonly used tags such as fluorescent proteins, but if there is concern that such tags may negatively affect cell viability or homeostasis the label-free nature of our approach does not require them. Fourth, using the spectroscopic data we have demonstrated that quantitative information regarding the fractional occupancy of surface bound ligands can be calculated.
There are numerous alternative methods to EBL for fabricating metallic nanoparticles. However, we have found that the EBL provides considerable flexibility for optimizing nanostructure and array dimensions to best suit the optics and the cells under investigation. Also critical is the fact that the chips can be readily regenerated by plasma ashing. In this way, a typical chip can be used dozens of times. Biofunctionalization details must be modified for the specific application. The protocol presented here conjugated the surface with relatively small c-myc peptide ligands. Larger ligands such as whole antibodies typically require more spacing and thus a higher SPO to SPN/SPC ratio. Regardless, a well formed SAM layer is essential for preventing non-specific binding in live-cell experiments. In general, larger molecular weight analytes are more readily detected by LSPR. Thus, in its single-cell manifestation, this technique may not be appropriate for detecting the secretion of small proteins, such as cytokines.
The current setup has been used for studying individual non-adherent cells. There are significant number of secreted signaling proteins and vesicles to which the results reported in this work are directly applicable. For example carcinoembryonic antigen (CEA) which for decades now has been a diagnostic marker for cancer. Colon cancer cells are known to secrete CEA at the rates of thousands of molecules/cell/hr and the molecular weight is 180 kDa which exceeds that of IgG antibodies. CEA is believed to be involved in autocrine and paracrine signaling pathways but the spatio-temporal nature of these secretions have never been measured. Our technique can directly address these signaling questions. An extension of this work will be to measure the spatio-temporal nature of CEA secretion from single cells.33 Future work will also focus on integrating LSPRi with two and three dimensional cell cultures of adherent cells. By incorporating multiplexed arrays capable of detecting a number of secreted proteins in parallel, this technique has the potential to open a new window into cell secretions and how they influence neighboring cells.
We thank George Anderson for helpful comments and discussions. This work was supported by the Naval Research Laboratory’s Institute for Nanoscience and the National Research Council Research Associateship Award.
The authors have nothing to disclose.
Name | Company | Catalog Number | Comments |
25mm diameter glass coverslips | Bioscience Tools | CSHP-No1.5-25 | 170±5 µm is optimal |
Poly-methyl methacrylate | Microchem | PMMA 950 A4 | |
Ethyl lactate methyl metacrylate | Microchem | MMA EL6 | |
Electron beam evaporator | Temescal | FC-2000 | |
Electron beam lithography | Raith | Series 150 | |
Ethanol | Sigma-Aldrich | 459836 | |
Acetone | Sigma-Aldrich | 320110 | |
CR-7 chromium etchant | Cyantek | CR-7 | |
Scanning electron microscope | Zeiss | Ultra 55 | |
Atomic force microscope | Veeco | Nanoscope III | |
Plasma ashing system | Technics | Series 85 RIE | |
SH-(CH2)8-EG3-OH (SPO) | Prochimia | TH 001-m8.n3-0.2 | |
SH-(CH2)11-EG3-COOH (SPC) | Prochimia | TH 003m11n3-0.1 | |
SH-(CH2)11-EG3-NH2 (SPN) | Prochimia | TH 002-m11.n3-0.2 | |
Surface plasmon resonance system | Biorad | XPR36 | |
Bare gold chip | Biorad | GLC chip | Plasma ashed to remove the monolayer |
1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide | Thermo | 22980 | |
N-hydroxysuccinimide (NHS) | Thermo | 24510 | |
Pentylamine-Biotin | Thermo | 21345 | |
Ethanolamine | Sigma-Aldrich | E9508 | |
Neutraavidin | Thermo | 31000 | |
Phosphate buffered saline | Thermo | 28374 | |
Tween 20 | Sigma-Aldrich | P2287 | |
Inverted microscope | Zeiss | Axio Observer | Microscope is equipped with 40X oil immersion objective; CO2 and humidity incubation from Pecon GmbH |
CCD camera | Hamamatsu | Orca R2 | Thermoelectrically cooled (16 bit) |
Spectrometer | Ocean Optics | QE65Pro | |
Spectrasuite | Ocean Optics | version1.4 | |
c-myc peptide HyNic Tag | Solulink | SP-E003 | |
monoclonal anti-c-myc antibody | Sigma-Aldrich | M4439 | |
Hybridoma cell line | ATCC | CRL-1729 | |
Antibiotic Antimycotic Solution (100×) | Sigma-Aldrich | A5955 | |
Serum free media RPMI 1640 | Invitrogen | 11835-030 | |
Fetal bovine serum | ATCC | 30-2020 | |
Rhodamine DHPE | Life Technologies | L-1392 |
请求许可使用此 JoVE 文章的文本或图形
请求许可探索更多文章
This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。