JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

We described a protocol for prevention of heat stress effects in rats by oral pre-treatment with beneficial bacteria. This protocol can be modified and used for various routes of administration and for analysis of different compounds.

摘要

此研究的目的是评估对热应力有关的并发症的枯草芽孢杆菌菌株的保护作用。三十二个的Sprague-Dawley大鼠用于该研究。动物口服治疗,一天两次两天与B枯草芽孢杆菌菌株BSB3或PBS。第二天在最后一次治疗后,各组被划分和两个实验组(一个用PBS处理和一个与枯草芽孢杆菌处理的)被放置在45℃下25分钟。两个对照组留在室温下25分钟。所有大鼠安乐死,并在各组不同的参数进行了分析。热应力的不良影响是由绒毛高度,并在肠上皮细胞总粘膜厚度的减小登记;从管腔细菌易位;增加红细胞的囊泡和仰角的脂多糖(LPS)在血液中的水平。治疗的保护效力是通过预评估这些副作用公约。该协议被设定为大鼠细菌预防热应力并发症的口服治疗,但该协议可以被修改,并用于其它给药途径和不同的化合物的分析。

引言

Different stressors affect human and animal health. Temperature is one of the most stressful factors, causing chronic, acute and even lethal illnesses1. Changes in intestinal morphology and a loss of gut barrier integrity after heat stress were documented in many cases2,3. This protective barrier is responsible for defense against translocation of gut bacteria and their toxins, in particular lipopolysaccharides (LPS), from the lumen to the internal circulation4,5. Stability of the gut microbiota significantly influences intestinal barrier function, the immune response of the host, and tolerance to stress conditions6. Thus, modulation of the intestinal microbiota can provide a novel approach for prevention of stress-related adverse effects.

Beneficial bacteria have been used as a promising strategy to modify the gut microbiota for successful management of various clinical conditions, such as diarrhea, inflammatory bowel disease, atopic dermatitis, metabolic disorders7-10. Probiotic effects of beneficial bacteria include production of essential metabolites to support intestinal health, stimulation of the immune system, promotion of lactose tolerance, restoration of epithelial dysfunction. Probiotics were effective in prevention of the stress-related complications in vitro and in animal models11,12.

Researchers have given more attention to Bacillus bacteria as probiotics because these bacteria support intestinal homeostasis13 and have beneficial effects on the host14. Our previous data demonstrated high efficacy of Bacillus probiotics against pathogens in vitro15,16 and in clinical trials17,18. Here, we aim to evaluate the preventive effect of B. subtilis BSB3 strain against complications after heat stress.

研究方案

所有的实验程序,由奥本大学IACUC,阿拉巴马州奥本市批准。

1,文化传媒,餐具和细菌培养的制备

  1. 接种10毫升营养肉汤的与枯草芽孢杆菌 BSB3培养物的单个菌落,在营养琼脂平板上生长过夜的烧瓶中。
  2. 使500毫升孢子形成介质19(每升:细菌用营养肉汤,8克10%(重量/体积)的KCl,10毫升,1.2%(重量/体积)用MgSO 4×7H 2 O,10毫升,琼脂,15克),在121℃下20分钟的高压釜。允许冷却至50℃,并添加以下无菌溶液:1米的Ca(NO 3)2,1毫升, 0.01M的氯化锰2,1毫升, 1 mM的硫酸亚铁1毫升。
  3. 40℃,在室温下20分钟凉爽准备介质和将25 ml接种入各在无菌柜20的无菌培养皿中。让中等固化过夜。
  4. 传播0.5毫升的B过夜培养芽孢杆菌BSB3到在培养皿中的介质的表面上。文化孵育在37℃5天,直到90%孢子。显示高分辨率显微镜相亮孢子。
  5. 收获细菌加入1毫升无菌磷酸盐缓冲盐水(PBS)的到板,并使用无菌细胞吊具从表面刮细菌。直到需要存储该悬浮液在冰箱中。
  6. 37℃。24小时-通过电镀0.1毫升上孢子形成培养基平板细菌悬浮液的合适的稀释液(10 -5〜10 -6),随后温育18的确认菌的生存能力
  7. 指望平板菌落使用菌落计数器并计算测试悬挂细菌的滴度。制备细菌悬浮液与最终浓度为1×10 8 CFU / ml,在PBS中。

2.动物

  1. 使用32只雄性SD大鼠(250 - 300克)。保持与免费获取标准颗粒饲料和水无特定病原体条件下的动物。建立一个平均温度(21±1℃),湿度(50±5%)和12小时光照-黑暗周期。

3.实验设计

  1. 经口灌胃11开始治疗的动物,驯化后的2天。使用注射器用口管饲针头。治疗16大鼠B.枯草 BSB3悬浮(1毫升,每鼠)两次两天每天( 枯草芽孢杆菌组)。治疗16只大鼠用PBS(1毫升,每鼠)两天(PBS组)(图1),每天两次。
  2. 治疗后,各细分组(每组8只):1组对照组(PBS /无应力),2-组B.枯草芽孢杆菌枯草芽孢杆菌 /无应力),3组应力(PBS /热应激)和组4- B.枯草芽孢杆菌 +应力( 枯草芽孢杆菌 /热应激)。
  3. 使用电子角测量每只大鼠的直肠温度TRONIC数字温度计。保持组1和2的大鼠在室温下25分钟。在45℃下在气候室组3和4以及相对湿度为25分钟的55%的地方动物。
  4. 然后,测量使用电子数字温度计各组每只大鼠的直肠温度。放置在室温下的所有动物4小时。
  5. 在密封的罐子麻醉 - (4%2)观察,直到大鼠深度麻醉(无响应脚趾捏的)麻醉异氟醚老鼠。通过用断头台斩首迅速安乐死只。
  6. 从每只大鼠20收集主干血(15 - 15毫升)与无热原进入移液器无热原管,以获得血清,并立即采取与镜检吸管的血液样本(每只大鼠7微升)。
  7. 放管与血液在冰箱中至少30分钟,以允许凝固。离心管中,在20℃7000 XG 10分钟,迅速除去血清吸管。在-20℃下,直到检测每只大鼠成50微升体积和存储获得的分装血清。

4.手术过程

  1. 剪切/修剪从电动剪板机尸体的下面的腹部和胸部都皮毛。放置胎体在无菌柜和治疗用70%酒精胎体的剃表面。
  2. 用无菌解剖刀创建腹部中线切开。使用无菌镊子各组大鼠肝脏取出,肠系膜淋巴结,脾,小肠。

5.细菌移位分析

  1. 肝,肠系膜淋巴结和脾的每个样品放入预先称重的无菌管和权衡。计算出样品的重量与样品的管的重量和空管的重量之间的差异。
  2. 添加无菌PBS到管以得到1:10稀释(重量/体积)的样品和homogenize每个样品用无菌玻璃组织匀浆器以获得均匀的悬浮液21。
  3. 使在无菌PBS各样品的连续稀释液(10 -1〜10 -4)。板0.1各组织的所有稀释到麦康凯的表面和5%血琼脂和布鲁氏菌血琼脂血红素(0.005克/ L)和维生素K1(0.01克/升)板毫升。
  4. 孵育麦康凯的5%血琼脂平板和好氧布鲁氏菌血琼脂平板厌氧条件下在37℃22。
  5. 算需氧细菌的菌落后24小时,并使用菌落计数器48小时温育后厌氧菌菌落。表达结果作为在一克组织的菌落形成单位(CFU)的数目。

6.组织学分析

  1. 通过外科手术从每只大鼠中取出小肠样品(步骤4.1 - 4.2)。修复布安固定液的样品,石蜡嵌入,制备6微米的部分和染色部分,使用标准程序23苏木精和曙红。
  2. 用高分辨率显微镜系统,用于测量每个样品(倍率100倍)24在肠绒毛和总粘膜厚度的高度。分析来自各大鼠4个样品,并在每个样品中至少二十测量。表达微米的结果。

7.细胞因子检测

  1. 使用IL-1β商业大鼠ELISA试剂盒; IL-6; TNF-α; INF-γ,IL-10,以根据制造商的协议测量血清中的细胞因子的水平。
  2. 生成每个组使用标准的相关试剂盒测定样品的标准曲线。通过与合适的标准曲线的实验数据进行比较确定每个样品中的细胞因子的水平。

8.脂多糖含量

  1. 使用根据大​​鼠脂多糖ELISA试剂盒分析血清中的LPS水平制造商的协议。通过与标准曲线的值所获得的值的比较,判断样品中的LPS浓度。

9.血液的高分辨率光学显微镜

  1. 使用先前描述25,26显微镜系统。使用一个隔振平台作为用于显微镜系统中的基站和摄像机和计算机25来记录实时图像。校准使用理查森滑动如前所述27测试图像。
  2. 放置7微升新鲜抽取的血液从载玻片上,盖玻片,照片各大鼠和每个样品(倍率1,700X)中记录的72×53.3微米2将 10图像帧。
  3. 测量使用软件,它提供实时高分辨率直视光学图象囊泡的浓度。检查每个实验条件28最小20的图像帧。

10. STATIS抽动

  1. 表达的所有值以平均值和标准偏差。进行统计分析和图形绘制。分析与两样本t检验的结果,在0.05设置显着性水平确定统计学意义。

结果

热应激后的动物之前,立即的平均体温为36.7±0.07℃,40.3±0.17℃,分别为(P <0.05)。大鼠暴露于热(第3组)导致绒毛高度的显著抑制和总粘膜厚度(图2,3)。 BSB3应变口服从热量的有害影响的应力保护肠道之前。

从肠道细菌易位通过肠系膜淋巴结的细菌分析(MLN),肝脏和各大鼠的脾脏来确定?...

讨论

暴露在高温下会导致严重的健康状况29。预防和早期发现与热应激的并发症是至关重要的30。 所提出的协议可以用来评估用于预防热应力的不良影响的各种方法的功效。

这个协议中的关键步骤包括:在热处理过程(45℃,25分钟);无热原的材料的收集和血液以防止肠毒素污染处理期间的使用;保持血清等分在-20℃至避免反复冻融;和?...

披露声明

作者宣称,他们没有竞争的经济利益。

致谢

This work was supported by the Auburn University fund FOP 101002-139294-2050.

材料

NameCompanyCatalog NumberComments
Phosphate buffered saline (PBS)Sigma-Aldrich, St. Louis, MOP4417
Ethyl Alcohol Pharmco products Inc. Brookfield, CT, USA 64-17-5
AgarVWR97064-334
MacConkey agar platesVWR470180-742
5% blood agar platesVWR89405-024
Brucella blood agar plate with Hemin, and Vitamin KVWR89405-032
Bouin’s FixativeElectron Microscopy Sciences, Hatfield, PA, USA15990
IL-10 Rat ELISA kitInvitrogen, Camarillo, CA, USAKRC0101
IL-1beta Rat ELISA KitInvitrogen, Camarillo, CA, USAKRC0011
IL-6 Rat ELISA KitInvitrogen, Camarillo, CA, USAKRC0061
INF-gamma Rat ELISA KitInvitrogen, Camarillo, CA, USAKRC4021
TNF-alpha Rat ELISA KitInvitrogen, Camarillo, CA, USAKRC3011
Rat LPS ELISA KitNeoBioLab, MA, USARL0275
Environmental Chamber 6020-1Caron, Marietta, OH, USA6020-1
Centrifuge Beckman Coulter, Indianapolis, IN, USAOptima L-90K
Ultra Centrifuge
Light microscope optical systemCitoViva Technology Inc., Auburn, AL
Colony counterFisher Scientific , Pittsburgh, PA, USARE-3325
FreezerHaier, Brooklyn, NY, USAHCMO50LA
Ultra microplate readerBio-Tek Instrument, Winooski, VT, USAELx 808
Auto Strip WasherBio-Tek Instrument, Winooski, VT, USAELx50
PipettesGilson, Pipetman, FranceP100, P200, P1000
C24 Incubator ShakerNew Brunswick Scientific, Enfield, CT, USAClassic C24
Rocking Shaker Reliable Scientific, Inc., Nesbit, MS, USA55
Petri dishesFisher Scientific, Pittsburgh, PA, USA875713100 mm x 15 mm
SterilGard III AdvanceThe Baker Company, Sanford, ME, USASG403
Culture Growing FlasksCorning Incorporated, Corning, NY, USA4995PYREX 250 ml Erlenmeyer flasks
Optical Spectrometer Genesys 20Thermo Scientific, Waltham, MA, USA.4001
Sony DXC-33 Video cameraSony
Richardson test slideElectron Microscopy Science, Hatfield, PA, USA80303
Millipore water purification systemMilliporeDirect-Q
Image-Pro Plus softwareMedia Cybernetics, MD, USA
Triple Beam BalanceOHAUS Corporation, Parsippany, NJ, USA
Tissue Homogenizer, DounceVWR71000-518

参考文献

  1. Crandall, C. G., Gonzalez-Alonso, J. Cardiovascular function in the heat-stressed human. Acta Physiol. 199, 407-423 (2010).
  2. Lambert, G. P. Role of gastrointestinal permeability in exertional heatstroke. Exerc. Sport Sci. Rev. 32, 185-190 (2004).
  3. Yu, J., et al. Effect of heat stress on the porcine small intestine: A morphological and gene expression study. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 156, 119-128 (2010).
  4. Moseley, P. L., Gisolfi, C. V. New Frontiers in Thermoregulation and Exercise. Sports Med. 16, 163-167 (1993).
  5. Lambert, G. P. Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J. Anim. Sci. 87, 101-108 (2009).
  6. Berg, A., Muller, H. M., Rathmann, S., Deibert, P. The gastrointestinal system - An essential target organ of the athlete's health and physical performance. Exerc. Immunol. Rev. 5, 78-95 (1999).
  7. Khan, M. W., et al. Microbes, intestinal inflammation and probiotics. Expert Rev Gastroent. 6, 81-94 (2012).
  8. Quigley, E. M. M. Prebiotics and Probiotics: Their Role in the Management of Gastrointestinal Disorders in Adults. Nutr Clin Pract. 27, 195-200 (2012).
  9. Gore, C., et al. Treatment and secondary prevention effects of the probiotics Lactobacillus paracasei or Bifidobacterium lactis on early infant eczema: randomized controlled trial with follow-up until age 3 years. Clin Exp Allergy. 42, 112-122 (2012).
  10. Gomes, A. C., Bueno, A. A., de Souza, R. G. M., Mota, J. F. Gut microbiota, probiotics and diabetes. Nutr. J. 13, (2014).
  11. Eutamene, H., et al. Synergy between Lactobacillus paracasei and its bacterial products to counteract stress-induced gut permeability and sensitivity increase in rats. J. Nutr. 137, 1901-1907 (2007).
  12. Ait-Belgnaoui, A., et al. Lactobacillus farciminis treatment attenuates stress-induced overexpression of Fos protein in spinal and supraspinal sites after colorectal distension in rats. Neurogastroenterol. Motil. 21, 585-593 (2009).
  13. Fujiya, M., et al. The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal Homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe. 1, 299-308 (2007).
  14. Cutting, S. M. Bacillus probiotics. Food Microbiol. 28, 214-220 (2011).
  15. Pinchuk, I. V., et al. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrob Agents Ch. 45, 3156-3161 (2001).
  16. Sorokulova, I. B., Kirik, D. L., Pinchuk, I. V. Probiotics against Campylobacter pathogens. J. Travel Med. 4, 167-170 (1997).
  17. Gracheva, N. M., et al. The efficacy of the new bacterial preparation biosporin in treating acute intestinal infections. Zh Mikrobiol Epidemiol Immunobiol. , 75-77 (1996).
  18. Horosheva, T. V., Vodyanoy, V., Sorokulova, I. Efficacy of Bacillus probiotics in prevention of antibiotic-associated diarrhoea: a randomized, double-blind, placebo-controlled clinical trial. JMM Case Report. 1, (2014).
  19. Sorokulova, I. B., Krumnow, A. A., Pathirana, S., Mandell, A. J., Vodyanoy, V. Novel Methods for Storage Stability and Release of Bacillus Spores. Biotechnol. Prog. 24, 1147-1153 (2008).
  20. Vogel, H. G., Vogel, W. H., Vogel, H. G., Vogel, W. H. Drug Discovery and Evaluation: Pharmacological Assays. eds H.G. Vogel & W.H. Vogel. , 658-659 (1997).
  21. Bailey, M. T., Engler, H., Sheridan, J. F. Stress induces the translocation of cutaneous and gastrointestinal microflora to secondary lymphoid organs of C57BL/6 mice. J. Neuroimmunol. 171, 29-37 (2006).
  22. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 118, 229-241 (2004).
  23. Leon, L. R., Blaha, M. D., DuBose, D. A. Time course of cytokine, corticosterone, and tissue injury responses in mice during heat strain recovery. J. Appl. Physiol. 100, 1400-1409 (2006).
  24. Ribeiro, S. R., et al. Weight loss and morphometric study of intestinal mucosa in rats after massive intestinal resection. Influence of a glutamine-enriched diet. Rev. Hosp. Clìn. Fac. Med. S. Paulo. 59, 349-356 (2004).
  25. Vainrub, A., Pustovyy, O., Vodyanoy, V. Resolution of 90 nm (lambda/5) in an optical transmission microscope with an annular condenser. Opt Lett. 31, 2855-2857 (2006).
  26. Moore, T., Globa, L., Pustovyy, O., Vodyanoy, V., Sorokulova, I. Oral administration of Bacillus subtilis strain BSB3 can prevent heat stress-related adverse effects in rats. J Appl Microbiol. 117, 1463-1471 (2014).
  27. Richardson, T. M. Test slides: Diatoms to divisions-What are you looking at. Proc Roy Microsc Soc. 22, 3-9 (1988).
  28. Moore, T., Sorokulova, I., Pustovyy, O., Globa, L., Vodyanoy, V. Microscopic evaluation of vesicles shed by rat erythrocytes at elevated temperatures. J Therm Biol. 38, 487-492 (2013).
  29. Leon, L. R., Helwig, B. G. Heat stroke: Role of the systemic inflammatory response. J. Appl. Physiol. 109, 1980-1988 (2010).
  30. Kumar, Y., Chawla, A., Tatu, U. Heat Shock Protein 70 as a Biomarker of Heat Stress in a Simulated Hot Cockpit. Aviat Space Env Med. 74 (7), 711-716 (2007).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

113

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。