Method Article
该协议演示了使用分门分割的微流体芯片,注射成型在循环烯烃共聚物培养的神经元区别于人类干细胞。这些芯片是预先组装的,比传统的分块聚(二甲基硅氧烷)器件更容易使用。这里描述了多种常见的实验模式,包括病毒标记、流体隔离、轴切除术和免疫染色。
使用微流体设备对培养的神经元进行分门别类已成为神经科学的标准方法。该协议演示如何使用循环烯烃共聚物(COC)制成的预组装多腔芯片对与人类干细胞不同的神经元进行分门别类。这些 COC 芯片的占地面积与标准显微镜幻灯片相同,与高分辨率显微镜同样兼容。神经元从人类神经干细胞 (NSC) 分化为芯片内的谷氨酸神经元,并维持 5 周,为这些神经元留出足够的时间来发展突触和树突状脊柱。此外,我们演示了使用这些多腔芯片的多种常见实验程序,包括病毒标记、建立微环境、轴切除术和免疫细胞化学。
人类干细胞分化神经元(hSC-神经元)越来越多地用于生物学研究。这些神经元,可以从人类来源材料,是极大的兴趣的翻译研究,包括研究创伤性脑损伤和神经退行性疾病,如阿尔茨海默氏病。因此,需要改进和促进hSC神经元研究的工具。
为了研究神经元独特的极化形态,许多研究人员使用多节分微流体装置1,2,3,4,5,6, 7,8,9,10,11.这些设备支持测量和操作具有独特亚细胞接入的长投影神经元。多条形微流体器件由两个平行的微流体隔间组成,由微槽隔开,这些微流体节子引导着斧子生长。神经元或神经干细胞 (NSCs) 在体素室中镀层,几分钟后粘附到隔间表面的底部。分化的神经元通过微槽区域生长并延伸其斧子/投影到相邻和隔离的斧室。过去,这些设备是专门使用聚(二甲基硅氧烷)(PDMS)复制成型制成的。PDMS设备有许多缺点,前面描述的12,包括持久性的疏水性和需要组装到玻璃盖玻片前立即使用。预组装注塑成型芯片克服了许多这些缺点,并出售商业(见材料表)12。这些芯片的隔间是永久的亲水性,整个芯片被注射成型在光学透明的循环烯烃共聚物(COC)。
该协议演示如何使用此 COC 芯片将人类 NSC 分化为兴奋神经元,并分离和流畅地分离其长神经元投影。在本演示中,神经元与NIH批准的H9干细胞进行了分化。类似的程序可用于区分人类诱导的多能干细胞。
注:图1A,B显示了预组装的COC芯片的示意图,包括主通道或隔间、井和微槽的位置。分离芯片可以在隔间内建立独特的流体微环境,食品着色染料的分离证明了这一点(图1C)。Nagendran等人给出了制备预组装多腔室芯片的协议,第1节第12节。
1. hSC-神经元多腔芯片的涂层
注:图2A显示了涂装程序的概述。
2. 将 NSC 播种到多隔间芯片中
注:该协议使用商业购买的NSCs,不像我们以前出版的出版物,开始于人类胚胎干细胞5。在这个协议中,神经干细胞被直接镀入塑料芯片中,在那里它们分化成神经元。细胞可以增殖作为NSCs(无差别)多达2个通道,并存储在液体N2的瓶中供进一步使用。 该协议使用在通道 1 或 2 之后存储在液体 N2中的 NSC 小瓶。图 2B显示了涂装程序的概述。
3. 芯片内hSC神经元的病毒荧光标记
注:多种病毒可用于标记芯片内的神经元。以下说明描述了 G-删除狂犬病-mCherry 或 @eGFP 病毒的使用。可能感染性的材料必须按照适用的规则和条例进行处理,并且可能需要额外的培训和机构批准。
4. 芯片内的流体隔离、异形和免疫染色
在具有分化介质的芯片中一周(7-10天)后,NSCs分化成神经元,神经元投影进入斧室(图3)。在芯片内,神经元在体腔内均匀地连接和分布。相比之下,PDMS 设备中的神经元早在加入分化介质后 5 天就聚集/聚集,从而导致细胞健康受损,如图3B(第 13 天放大图像)所示。芯片中的神经元看起来健康与捆绑的斧子。健康的神经元可以在芯片内维持4-5周。
为了可视化神经元成熟和树突状脊柱发育,经过修饰的狂犬病病毒在第29天被送到斧室,用mCherry荧光蛋白逆行标记神经元,包括树突状脊柱。狂犬病病毒感染四天后,将斧子伸入斧腔室的神经元表示mCherry。在分化日33处的神经元显示树突状脊柱的形成(图4)。树突状脊柱的可视化表明,NSC衍生神经元在芯片内分化形成成熟的突触。
多腔芯片还与免疫细胞化学兼容,以可视化蛋白质的细胞定位。在分化培养基中维持神经元26天后,神经元被标记为兴奋性突触标记,vGlut1(图5)。这些结果表明,病毒标记的神经元与vGlut1(图5E)和神经元特异性标记,β-图布林III(图5F-H)共同本地化。
使用AlexaFluor 488氢化物(一种低分子量荧光染料)来证明能够创建与斧子分离的独特微环境(图6)。
斧类损伤研究通常在隔离装置内进行。进行了原理证明实验,用预组装的COC芯片选择性地伤害分化神经元的斧子(图7)。结果相当于硅胶分块装置6,13,14。
图1:预组装的COC,多腔室微流体芯片。(A) 识别上井和下井的芯片的图纸.芯片尺寸为75毫米x25毫米,相当于标准显微镜幻灯片的大小。(B) A 放大区域,显示分隔通道的通道和微槽。其他细节见纳根德兰等人12。(C) 这张照片说明了使用食用色素染料在每个隔间内建立孤立的微环境。整个数字已由12日转载。请点击此处查看此图的较大版本。
图2:塑料隔板芯片涂层和NSC电池电镀时间线。(A) 塑料多隔间芯片涂覆预涂层溶液,然后聚-L-ornithine 和层宁,然后用 NSC 介质进行预调。(B) NSC在芯片的体腔中装有7 x 104个单元。细胞在NSC培养基中生长24小时,然后用神经分化介质替换。分化后7-10天观察到分化神经元。请点击此处查看此图的较大版本。
图3:芯片和PDMS器件的hSC神经元生长比较。(A) hSC-神经元的相对比图像在塑料多隔间芯片分化后13天生长。(B) 在 (A) 中的白色框中培养的 hSC 神经元区域和 PDMS 设备中的等效区域(右)的放大区域。芯片内的 hSC 神经元附着良好。在基于 PDMS 的设备中形成聚合神经元聚类。代表2个独立实验。请点击此处查看此图的较大版本。
图4:人类NSC衍生神经元显示树突状脊柱形态。在芯片内生长的分化日33处,逆行标记mCherry神经元。以红色勾勒的放大区域突出了树突状脊柱的存在,这为成熟谷氨酸突触的发展提供了证据。红色箭头指向树突状脊柱。请点击此处查看此图的较大版本。
图5:在芯片内培养的人类NSC衍生神经元表现出兴奋突触。免疫染色在分化第26天进行。在体室中进行了神经元成像。A) vGlut1 ( 绿色) 和 (B) DAPI ( 蓝色) 免疫标签.(C) mCherry 标记的神经元 (红色) 逆行标记使用改良狂犬病病毒。(D)A-C的合并荧光显微图 .(E) 丹德林基脊柱和 vGlut1 阳性双子项与 mCherry 阳性树突共发生,显示在从 (D) 放大的区域中。(F) 神经元特异性标记子的免疫荧光显微图,β-图布林III(品红色)和(G) vGlut1(绿色)。(H) β-图布林 III 和 vGlut1 的覆盖。请点击此处查看此图的较大版本。
图6:病毒性转导的mCherry神经元将投影扩展到预组装的COC芯片内建立的斧子局部微环境。(A) mCherry 标记神经元通过芯片的微槽将斧子延伸,并进入一个隔离的斧子隔间.使用 Alexa Fluor 488 氢化物可可视化斧子隔间隔离。神经元成像发生在感染改性狂犬病病毒后的第26天和第3天。(B)A中的荧光图像与 DIC 图像合并.注意微槽的位置。请点击此处查看此图的较大版本。
图7:在COC多腔芯片内执行的异形。(A) mCherry 标记的神经元在分化第33天被成像前进行切除术."火"颜色查找表。(B) 轴向切除术后立即发生,表明轴子被完全割断。请点击此处查看此图的较大版本。
塑料多隔间芯片 | PDMS 多腔室设备 |
隔离斧子 | 隔离斧子 |
建立微环境 | 建立微环境 |
原子化神经元 | 原子化神经元 |
光学透明 | 光学透明 |
兼容高分辨率成像 | 兼容高分辨率成像 |
与荧光显微镜兼容 | 与荧光显微镜兼容 |
完全组装 | 组件到基板需要 |
健康斧急 >21 天 | 健康斧急 >14 天 |
亲水培养表面 | 疏 水 |
气体不透气 | 透气 |
圆微槽和通道 | 直微槽 |
与激光消融不兼容 | 当 PDMS 腔室组装在特殊的激光消融兼容幻灯片上时,可用于激光消融。 |
无法更改设备以删除顶部 | 顶部可拆卸,用于在微槽内染色 |
与矿物油基浸入油不兼容(硅基油是精细的) | 与矿物油基浸入油兼容 |
不透渗透小分子和有机溶剂 | 吸收小分子和有机溶剂 |
芯片无泄漏问题 | 涂有聚L-氨基苯和拉米宁,使设备泄漏 |
差异化神经元在测试的细胞密度下保持均匀分布(> 4 周) | 分化神经元在被测试的细胞密度下培养3-4天后开始聚集 |
表1:培养神经元的多腔COC芯片和硅胶装置的共性
预组装的多腔COC芯片是一个易于使用的分门式平台,用于长期将人类NSC区分和维护到神经元中(>4周)。在此协议中,我们演示了人类NSCs分化为谷胱甘肽神经元,逆行标签神经元,执行免疫细胞化学,可视化树突状脊柱形态,并进行弓形切除术。这些芯片与高分辨率成像兼容,与COC12没有自荧光。
COC多腔芯片在功能上相当于硅基的隔板设备,具有优点和缺点,如前12所述。表 1比较了用于培养 hSC 神经元的多腔 COC 芯片和硅胶设备。COC分块芯片为在漫长的培养期内的干细胞的附着和维护提供了更好的亲水表面。基于 PDMS 的设备需要组装并连接到玻璃盖玻片上。PDMS装置的疏水性导致干细胞聚集5;这导致在细胞水平上成像方面的挑战,以及由于介质变化期间细胞聚集物的移动而造成物理损伤的更大易感性。塑料芯片克服了这些挑战。与 PDMS 不同,COC 是气体不渗透的,因此用户必须清除在通道内滞留或形成的气囊。预涂布解决方案可降低空气滞留在通道中的可能性。这种溶液由乙醇和其他制剂组成。先前公布的一种在塑料芯片内培养鼠神经元的协议提供了有关切液细胞和芯片12内介质的其他细节。NSC比鼠神经元更脆弱,所以必须更温和地处理。在电镀之前,通过轻轻上下移液来彻底混合干细胞也是至关重要的。
使用从体外分化的人类干细胞衍生的神经元在医学和研究中正变得越来越流行。这些神经元对于许多中枢神经系统疾病(包括神经退行性疾病和创伤性脑损伤)的研究和临床应用非常重要。这些神经元非常类似于人类胎儿神经元15。将来,可以从干细胞中生成适当的老化神经元,以模拟与年龄相关的神经元功能,并与这些分离的装置结合使用。这些设备将促进研究影响斧子健康和功能的疾病,如诊断为自闭症谱系障碍的患者神经元的斧子缺陷和损伤16、17后的斧子再生。
标准普尔和T.N.宣布没有相互竞争的经济利益。V.P. 是 Xona 微流体有限责任公司的雇员。J.H. 是 Xona 微流体有限责任公司的成员。A.M.T. 是微流体室/芯片的发明者(US 741982B2,EPO 2719756 B1),是 Xona 微流体有限责任公司的成员。
作者承认来自Xona微流体学,LLC,国家心理健康研究所(R42 MH097377),和国家神经疾病和中风研究所(R41 NS108895,P30 NS045892)的支持。内容完全由作者负责,不一定代表国家卫生研究院的官方观点。
Name | Company | Catalog Number | Comments |
Alexa Fluor hydrazide 488 | ThermoFisher Scientific | A10436 | |
Alexa Fluor secondary antibodies | ThermoFisher Scientific | 1:1000 | |
anti_beta-tubulin III | Aves | TUJ | 1:1000 |
anti-vGAT antibody | Synaptic Systems | 131 003 | 1:1000 |
anti-vGlut1 antibody | NeuroMab | 75-066 | clone N28/9, 1:100 |
complete neural stem cell media: | |||
REC HU EGF 10 UG BIOSOURCE (TM) | ThermoFisher Scientific | PHG0314 | 20ng/mL |
REC HU FGF BASIC 10 UG BIOSOURCE (TM) | ThermoFisher Scientific | PHG0024 | 20ng/mL |
GlutaMAX Supplement (100X) | ThermoFisher Scientific | 35050061 | 2mM |
KnockOut DMEM/F-12 | ThermoFisher Scientific | 12660012 | |
StemPro Neural Supplement | ThermoFisher Scientific | A1050801 | 2% |
Epifluorescence imaging system | EVOS Fluorescence imaging system | AMF4300 | 10x objective |
fluorinated ethylene propylene film | American Durafilm | 50A | 0.5 mil thickness |
Fluoromount G | ThermoFisher Scientific | 00-4958-02 | |
Gibco DPBS without Calcium and Magnesium | ThermoFisher Scientific | 14190144 | |
GIBCO HUMAN NSC (H9) KIT COMBO KIT | Gibco | N7800200 | |
Gibco Laminin | ThermoFisher Scientific | 23017015 | |
Glass Pasteur pipettes | Sigma-Aldrich | CLS7095D5X SIGMA | 5.75 in length |
H9-DERIVED HU NEURAL STEM CELL 1E6 CELLS/VIAL; 1 ML | ThermoFisher Scientific | 510088 | |
hibernate-E Medium | ThermoFisher Scientific | A1247601 | |
Incubator, 5% CO2 37 °C | |||
Laser scanning confocal imaging system | Olympus | FV3000RS | 30x silicone oil objective |
modified rabies virus | Salk Institute for Biological Studies | G-deleted Rabies-eGFP | Material Transfer Agreement required |
Mr. Frosty | ThermoFisher Scientific | 5100-0001 | |
Neural differentiation media | Per 100 mL. | ||
Antibiotic-Antimycotic (100x) | ThermoFisher Scientific | 15240112 | 1mL (100X) |
Ascorbic acid | Sigma Aldrich | A8960 | 200mM |
BDNF | ThermoFisher Scientific | PHC7074 | 40 ng/mL |
Gibco B27 Plus Supplement (50X) | FisherScientific | A3582801 | 2mL (50X) |
Gibco CultureOne Supplement (100X) | FisherScientific | A3320201 | 1mL (100X) |
Gibco Neurobasal Plus Medium | FisherScientific | A3582901 | |
StemPro Accutase Cell Dissociation Reagent | ThermoFisher Scientific | A1110501 | |
Taylor Wharton Liquid N2 dewar | FisherScientific | 20HCB11M | |
triton X-100 | ThermoFisher Scientific | 28314 | |
XC pre-coat | Xona Microfluidics, LLC | XC Pre-Coat | included with XonaChips |
XonaChip | Xona Microfluidics, LLC | XC450 | 450 µm length microgroove barrier |
Humidifier Tray | Xona Microfluidics, LLC | humidifier tray |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。