Method Article
一种方法被描述为同时从单个成年小鼠心脏的腹膜和心室中分离出肌细胞和非肌细胞。此协议可产生高度可行的心肌细胞和非肌细胞的一致产量,并详细说明表型和体外分析的最佳细胞特定培养条件。
从小鼠身上分离和培养心脏肌细胞对于进一步理解心脏生理学和病理生理学至关重要。虽然从新生儿小鼠心脏中分离肌细胞相对简单,但成人小鼠心脏的肌细胞是首选。这是因为与新生儿细胞相比,成人肌细胞更准确地重述细胞功能,因为它发生在成人心脏的体内。 然而,从技术上讲,很难在必要的数量和可行性中分离成年小鼠心脏肌细胞,这导致了实验僵局。此外,公布的程序是专门隔离心室或心室肌细胞,牺牲心室和心室非肌细胞。这里描述的是一个详细的方法,隔离心室和心室心脏肌细胞,以及心室和心室非肌细胞,同时从一个单一的老鼠心脏。此外,还提供了最佳细胞特异性培养方法的详细信息,可增强细胞的生存能力和功能。该协议不仅旨在加快成人穆林心脏细胞分离的过程,而且旨在提高细胞的产量和存活率,用于研究心室和心室心脏细胞。
原细胞培养是一种不可或缺的资源,为心脏肌细胞功能的详细机械研究提供了一个受控的环境。由于其更持久的性质和容易隔离,新生儿大鼠心室和心室肌细胞一直是这种细胞培养物的共同来源1。然而,成人小鼠心房和心室肌细胞(AMAM和AMVM)是非常可取的体外研究,因为他们的分子和功能特征更好地模仿成人心脏细胞。因此,他们已成为相关的研究与心脏病理学,其中大多数发展在成人2。
此外,转基因和疾病小鼠模型的可用性和使用扩展了孤立的成人心脏肌细胞的效用。鼠标AMVM的短期和长期研究的隔离和文化协议已在许多以前的出版物2,3,4,5,6,7,8,9,10,11中进行了描述。相比之下,对于 AMAM 的隔离,很少描述协议。此外,那些描述主要是优化为急性研究新鲜分离的细胞,没有长期的培养协议描述至今11,12,13。因此,AMAM 隔离协议的设计并不旨在为 AMM 的隔离和文化提供已发布的协议的实用性和多功能性。此外,虽然对AMAM和AMVM隔离的开创性研究已被证明是足智多谋的,但目前还没有关于AMAM和AMVM最佳并发隔离和文化的协议,这导致每次准备都能够有效地使用整个心脏。
到目前为止,已发布的AMAM和AMVM隔离协议并不是为同时隔离这两种细胞类型而设计的,因为大多数关于心房和心室功能的研究都有一个特定于腔室的焦点。例如,AMAM主要用于研究心房肌细胞电生理学,部分原因是对心房颤动(AF)的兴趣,心房颤动是美国最常见的心律失常。然而,AF不是一种孤立地影响腹膜的疾病,它被牵连为在轻度到重度左心室功能障碍14中起因果作用。此外,心电图从心力衰竭患者与保留的弹射分数(HFPEF)已经表明,左心房大小是最有力的预测之一,易感性心力衰竭15。
中庭除了在电生理学和收缩性方面的作用外,还是一种内分泌器官,分泌心电因子(即心房内科肽[ANP]),以平衡调节血压和体积16,17。此外,ANP(大概来自心室肌细胞)在心室肌细胞16,17中具有突出的保护和抗肥大作用。虽然不同疾病状态的腹膜和心室之间有很强的神经荷尔蒙交流的含义,但这种交流背后的机制尚未得到充分探讨。这一点进一步体现了研究的激增,重点是1)非肌细胞(特别是心脏成纤维细胞和免疫细胞)在患病心脏中的作用,2)心脏重塑作为疾病的功能直接影响心脏肌细胞的生存能力和全球心脏功能18,19,20,21,22。因此,从心室和心室研究心脏细胞是获得更全面地了解它们在心脏病理生理学中的作用的必要方法。
以下协议描述了在生理和病理生理条件下,心室和心室肌细胞和非肌细胞与单个小鼠心脏的同步分离。此外,该方法是首次描述维持心室心肌细胞培养所必需的最佳条件,因为维持心室肌细胞培养的条件已经公布。
本文报告的所有对小鼠的研究都经过SDSU机构动物护理和使用委员会的审查和批准,并符合国家研究委员会发布的《实验室动物护理和使用指南》。
1. 准备隔离和文化媒体和电镀
2. 隔离装置
3. 外科手术(非生存)
4. 纹状细胞隔离与培养
5. 心室细胞隔离和文化
野生类型 10 周大的 C57b6/j 小鼠心脏通常导致 75,000~150,000 心室肌细胞和 1.0×1.5 x 106心室肌细胞, 相当于心室和心室肌细胞18,19的约30%-50%的收益率。在隔离期间和隔离后立即,可行的心肌细胞应出现杆状和非收缩。大多数分离的心脏肌细胞应该适应这种形态,这是有效注入的迹象。棒形形态也可以是生存能力的预测器。该协议旨在提高从患病小鼠心脏中分离出的肌细胞和非肌细胞的产量和存活率。此外,它已在压力超载引起的心力衰竭模型中进行了测试(未显示数据)。
为了确认心肌细胞和非肌细胞与心室组织充分和可复制的分离,在培养的不同日子观察和拍摄细胞(图2)。此外,还进行了定量反向转录聚合酶链反应 (qRT-PCR) 来测量特定于细胞类型的成绩单水平。心脏肌肉肌肽T(Tnnt2)是心脏肌细胞的标记,在心室和心室心脏肌细胞培养物(图3A)中都表现强烈。相比之下,心室心律肽(Nppa,在生理条件下通常只在成人心室心肌细胞中表达)和肌素光链2(Myl2,这是一个心室肌细胞特异性基因)分别在心室和心室心脏肌细胞培养物中强烈而具体地表达(图3B,C)。
纤维细胞标记、转录因子21(Tcf21)、血小板衍生生长因子受体A(Pdgfra)和单细胞衍生细胞标记群的分化68(Cd68)完全表现在从心房和心室分离出来的非肌细胞培养物中(图3D+F)。据估计,非肌细胞危害约65%的所有心脏细胞,其中大部分来自成纤维细胞或单细胞衍生的血统18,19,23,24。因此,这两个血统的标记被选为具有代表性的,因为这些细胞群对研究各种模型和心脏病理学的词源感兴趣。
AMAM 和 AMM 的免疫素用于 t-tubule 标记二氢丙烯(DHPR,这是一种电压依赖型 (L) 型钙通道)以及 Ryanodine 受体 (RYR2), 在整个隔离和长期培养过程中展示了完整的 t 型管(图 4A,B)。DHPR的丰富性和局部性是心室和心室肌细胞所特有的,表明t-tubules的存在。此外,DHPR与RYR2免疫污染的同位化是完整直径结构的指标。心室和心室心肌细胞中肉瘤蛋白α-actinin的免疫素的免疫素导致预期的肉瘤斯特里特模式。肉体条纹模式用于评估孤立的心脏肌细胞的纯度和可行性与棒状形态形状和核染色与 TOPRO-3 (图 4C,D;紫色和红色)。不出所料,心室心脏肌细胞很大,平均长度为150毫米,心室心肌细胞平均长度为75毫米。此外,在免疫污染分析中,心室心脏肌细胞(但不是心室心肌细胞)表现出心室尿毒症肽(ANP)的强健表达,其染色模式是内质性晶体和分泌颗粒的本地化特征(图4C,D:绿色)。
心室心脏肌细胞特有的一个特点是,除了收缩细胞之外,它还被归类为内分泌细胞。当心外肌细胞在基底条件下分泌ANP时,分泌物会随着分泌物(即α-肾上腺炎激动剂、苯肾上腺素[PE])而增加。此外,心室心脏肌细胞分泌ANP和共同分泌处理激素的一部分从其前体状态(亲ANP,15kD)到产品肽(ANP 3kD)16,17。这种分泌能力可以通过免疫细胞检测ANP在分离心室心脏肌细胞的介质中,以回应急性PE治疗(图4E)量化。这种心室心脏肌细胞的分泌和处理能力被发现对培养条件很敏感。因此,必须辅以二甲基肌细胞电镀介质,辅以德沙美松、胰岛素、转移素和氦。
图1:逆行心脏输液、消化和细胞分离的示意图概述。 显示的是细胞与心房和心室同时从单个鼠心脏分离的主要步骤。(A) 单只老鼠的心脏通过上升的主动脉迅速被凝结,并以逆行的方式注入。(B) 心脏被分离成心室和心室组织,以进一步消化和物理分离。(C) 充分消化后,透过重力过滤将细胞分离成四个细胞部分,供日后实验使用。 请点击这里查看此数字的较大版本。
图2:对培养中分离的心室和心室心肌细胞和非肌细胞的形态学分析。(A) 孤立的成人小鼠心房肌细胞 (AMAM), (B) 成人小鼠心房非肌细胞 (AMANM), (C) 成人小鼠心室肌细胞 (AMVM), 或 (D )) 成人小鼠心室非肌细胞 (AMVNM) 在四室(1.7 厘米2)玻璃滑梯上镀在 5 x 105细胞/室中。相位图像是在文化中使用10倍目标在表观荧光显微镜下获得的。请点击这里查看此数字的较大版本。
图3:对孤立细胞培养物的代表性qRT-PCR分析。 RNA是从新分离的心脏肌细胞和非肌细胞中提取的,细胞特异性基因标记的mRNA水平由qRT-PCR4确定。(A) Tnnt2, 心脏肌肉肌肽 T (心脏肌细胞标记):(B) Nppa, 体外纳审肽 (脑膜肌细胞标记):(C) Myl2, 肌素光链 2 (心室肌细胞标记):(D) Tcf21, 转录因子 21 (成纤维细胞标记):(E) Pdgfra, 血小板衍生生长因子受体 A (纤维细胞标记):(F) Cd68,分化组68(单细胞衍生细胞标记)。数据表示平均± SEM(*p ≤ 0.05 不同于所有其他值,由 ANOVA 确定,随后由纽曼·库尔的事后分析确定)。 请点击这里查看此数字的较大版本。
图4:分离心室和心室心肌的代表性形态和功能分析。(A) A . AMAM 或 (B) AMVM 在四室(1.7 厘米 2 ) 玻璃滑梯上镀上 5 x 105个细胞/腔室 1 小时,以便粘附。随后,要么重新喂养心室肌细胞电镀介质,要么改为心室肌细胞维持介质,再补充布比斯塔汀16小时。文化随后被修复,然后免疫染色为RYR2(紫色),DHPR(绿色)和核污渍托普罗-3(红色)。(C) AMAM 或 (D) AMVM 被隔离和镀,然后免疫染色为阿替宁(紫色)、ANP(绿色)和 TOPRO-3(红色)。显示的是每个单元格类型的两个具有代表性的图像。(E) AMAM 在 12 口井培养皿上镀在 5 x10 5细胞/井上,在心室肌细胞电镀介质中镀 16 小时。随后,在收集媒体并接受ANP免疫细胞分析之前,AMAM用车辆或ANP分泌物(苯肾上腺素,50mM)治疗0.5小时。在免疫细胞分析之前,介质样本在500 x g下离心5分钟,以清除细胞碎片,并确保观测到的ANP是AMAM活性分泌的结果。请点击这里查看此数字的较大版本。
使用此处描述的程序分离的细胞的质量取决于许多可控因素,这些过程由培养细胞的细胞产量和整体健康决定。从小鼠本身开始,据记载,强加于动物的压力会对培养物中的细胞产量和生存能力产生负面影响,这大概是由于系统性皮质醇、儿茶酚胺和心脏组织2、5、7的超合同状态。出于这些原因,应采取措施避免在牺牲前惊动动物。这些措施包括覆盖动物的笼子,在牺牲前限制在动物笼子外的时间。肝素和许多巴比妥酸盐通常用于安乐死,可以影响信号通路:因此,应相应地定制最佳安乐死方法。动物的年龄对分离细胞的质量和生存能力有相当大的影响,很可能是由于间质纤维化的逐渐积累与衰老过程同时发生,这可能会影响组织消化25。在此处没有提供的数据中,虽然上述方法适用于78周大的小鼠,但这些老动物的细胞质量较低。
在描述的隔离过程中,最关键的一步,以及其他具有逆行香水的Langendorff装置的协议,是心脏的精制和初始注入。为了获得最佳结果,从心脏切除到上升主动脉的坎化和注入的启动,时间不应超过90秒。除了时间,另外两个重要因素是管子的深度和从输液装置中引入空气浮雕的可能性。因此,管子应推进到上升主动脉,以免进入主动脉根和阻碍主动脉瓣,这将损害冠状动脉的注入。
在消化过程中,定期测试心脏的刚度,避免长时间接触消化酶拼贴酶,降低心脏肌细胞钙耐受性。上述关于钙重新引入孤立的心室肌细胞培养物的协议旨在通过商店操作的钙通道不当钙流入来限制心脏肌细胞死亡。应当指出,逐步钙重新引入不应为孤立的脑膜肌细胞培养进行,因为这将促进细胞死亡在短期和长期文化12。为进一步预防,这里使用的香水和消化缓冲包括心脏肌肉收缩抑制剂丁尼迪翁单氧体(BDM),以避免孤立的肌细胞的过度竞争,以及钙悖论,两者都影响肌细胞的生存能力26。然而,应该注意从BDM到布比斯塔汀的转换,因为它是维护分离心脏肌细胞介质的首选抗收缩剂。在未显示的数据中,布比斯塔汀为孤立的心脏肌细胞的长期培养赋予了更大的生存能力。
隔离后立即考虑心脏细胞,特别是肌细胞的长期培养的影响是很重要的。此处描述的心脏非肌细胞分离和培养方案基于利用不同心脏细胞的不同密度和粘合特性的常见方法。非肌细胞的好处是它们在文化上具有很高的扩张潜力:因此,与心脏肌细胞不同,它们适合通过永久存在。然而,众所周知,培养条件,包括中等补充FBS,可以影响心脏肌细胞功能27。这里描述的文化媒体旨在优化生存能力和限制功能疯狂,特别是对于孤立的体外肌细胞。虽然在缺乏卵泡补充的情况下,在培养后分离的心脏肌细胞中未观察到明显受损的收缩能力,但专注于电生理学、收缩性和其他基于体内的单细胞分子信号的研究应在隔离后不久进行,此时肉体结构和分子特征仍与完整的心脏相似。
室外肌细胞的一个标志性特征是它作为具有巨大分泌能力的内分泌细胞的月光能力,以及它们的收缩功能。在生理条件下,心律间肌细胞产生大量的ANP,储存在内质性视网膜和大型密集核心分泌颗粒中,在接受刺激16、17后,这些颗粒准备进行调节性外分泌。虽然许多孤立的心房肌细胞研究侧重于其独特的电生理特性,但这是首次设计培养基的研究。这允许长期生存,以及促进内分泌的维持功能和收缩功能的房内分泌肌细胞。这种新的培养方法,以及同时将所有细胞类型与心房和心室从单个小鼠心脏中分离出来,对于研究心房和心室肌细胞的生理和病理生理特性将非常有用和有效。
作者没有什么可透露的。
E.A..B得到了美国国家卫生研究院(1F31HL140850)、ARCS基金会、圣地亚哥分会的支持,并且是SDSU心脏研究所的M.D.学者菲利普斯·高塞维茨的里斯-偷窃研究基金会。E.A..B和A.S.B得到了伊那莫里基金会的支持。CCG由(NIH)授予R01 HL135893,R01 HL141463和HL149931。
Name | Company | Catalog Number | Comments |
(-)-Blebbistatin | Sigma-Aldrich | B0560 | |
1 Liter Water Jacketed Reservoir | Radnoti | 120142-1 | |
2,3-Butanedione monoxime | Sigma-Aldrich | B0753 | |
5-0 Silk Suture Thread | Fine Science Tools | 18020-50 | |
Adenosine | Sigma-Aldrich | A9251 | |
Bovine Serum Albumin | Sigma-Aldrich | A6003 | |
Bubble Trap Compliance Chamber | Radnoti | 130149 | |
Calcium Chloride Anhydrous | Fisher Scientific | C614-500 | |
Carnitine hydrochloride | Sigma-Aldrich | C9500 | |
Collagenase type 2 | Worthington Biochemical Corporation | LS004176 | |
Creatine | Sigma-Aldrich | C0780 | |
Dexamethasone | Sigma-Aldrich | D2915 | |
DMEM/F12 (1:1; 1X) | Gibco | 11330-032 | |
Dumont #7 - Fine Forceps | Fine Science Tools | 11274-20 | |
Epifluorescent micropscpe | Olympus X70 | IX70 | |
Fetal Bovine Serum (Heat Inactivated) | Omega Scientific | FB-12 | Lot# 206018 |
Fine Scissors - Sharp | Fine Science Tools | 14060-09 | |
Graefe Forceps | Fine Science Tools | 11051-10 | |
Headband Magnifiers | Fine Science Tools | 28030-04 | |
Hemacytometer (Bright-Line) | Hausser Scientific | 1475 | |
HEPES (1M) | Gibco | 15630-080 | |
Inosine | Sigma-Aldrich | I4125 | |
Insulin-Transferrin-Selenium-X | Gibco | 51500-056 | |
Isotemp 105 Water Bath | Fisher Scientific | NC0858659 | |
Isotemp 3006 | Fisher Scientific | 13-874-182 | |
Joklik Modified Minimum Essential Media | Sigma-Aldrich | M-0518 | |
Laminin (Natural, Mouse) | Gibco | 1795024 | Lot# 1735572 |
L-Glutamine | Sigma-Aldrich | G8540 | |
Masterflex C/L Single-Channel Variable-Speed Compact Pump | Cole-Palmer | EW-77122-24 | |
Minimum Essential Medium (MEM 1X) | Gibco | 12350-039 | |
Molecular Biology Grade Water | Corning | 46-000-CM | |
Pen Strep Glutamine (100X) | Gibco | 10378-016 | |
Spring Scissors - 6mm Cutting Edge | Fine Science Tools | 15020-15 | |
Taurine | Sigma-Aldrich | T-8691 |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。