JoVE Logo

登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

本文介绍了直接将套管植入猪大水池的分步方案。

摘要

淋巴系统是大脑中的废物清除系统,依赖于星形胶质细胞结合的血管周围空间中脑脊液(CSF)的流动,并且与神经毒性肽(如β淀粉样蛋白)的清除有关。淋巴功能受损加剧了神经退行性疾病(如阿尔茨海默氏症)动物模型中的疾病病理学,这突出了理解这种清除系统的重要性。淋巴系统通常通过大水池插管(CMc)进行研究,其中示踪剂直接输送到脑脊液(CSF)中。然而,大多数研究都是在啮齿动物身上进行的。在这里,我们展示了CMc技术在猪中的适应性。在猪中使用CMc,可以在回脑大脑中以高光学分辨率研究淋巴系统,从而弥合啮齿动物和人类淋巴动物之间的知识差距。

引言

脑脊液(CSF)是一种血液超滤液,存在于中枢神经系统(CNS)内和周围12。除了为大脑提供浮力或吸收破坏性的机械力外,脑脊液在清除CNS3代谢废物方面也起着关键作用。最近表征的淋巴系统促进了废物清除,该系统允许脑脊液通过血管周围空间(PVS)通过脑实质的对流流,该血管周围空间包围穿透性动脉345。该过程已被证明依赖于水通道蛋白-4(AQP4),AQP4是主要在星形细胞末端上表达的水通道,与PVS46结合。在将荧光/放射性示踪剂或造影引入CSF7,891011之后,使用先进的光学显微镜或磁共振成像(MRI)通过体内离体成像实现淋巴系统的研究。

在不损害脑实质的情况下将示踪剂引入脑脊液的有效方法是通过大水池插管(CMc)1213。到目前为止,绝大多数淋巴研究都是在啮齿动物中进行的,并且在高等哺乳动物中避免了,因为CMc的侵入性加上与小型哺乳动物一起工作的实际简单性。此外,小鼠的薄头骨允许在不需要颅窗的情况下进行 体内 成像,随后允许简单的脑提取1114。在人类中进行的实验已经产生了关于淋巴功能的有价值的宏观 体内 数据,但依赖于腰椎远端的鞘内示踪剂注射,此外,利用MRI不能产生足够的分辨率来捕获淋巴系统的显微解剖法71516.了解高等哺乳动物中淋巴系统的结构和范围对于将其转化为人类至关重要。为了促进淋巴细胞向人类的转化,重要的是将啮齿动物中进行的技术应用于高等哺乳动物,以便能够直接比较不同认知和大脑复杂性增加的物种的淋巴系统17。猪和人的大脑是回脑的,具有折叠的神经结构,而啮齿动物的大脑是脑畸形的,因此彼此之间有很大的差异。就整体大小而言,猪的大脑也更可与人类相媲美,比人类大脑小10-15倍,而小鼠大脑小3000倍18。通过更好地了解大型哺乳动物的淋巴系统,有可能利用人类淋巴系统进行中风,创伤性脑损伤和神经变性等疾病的未来治疗干预。体内猪中的直接CMc是一种允许 高等哺乳动物中对淋巴系统进行高分辨率光学显微镜检查的方法。此外,由于所用猪的大小,可以应用类似于人类手术中使用的监测系统,从而可以严格记录和调节重要功能,以评估这些功能如何促进淋巴功能。

研究方案

所有程序均按照欧洲指令2010/63/EU执行,并得到马尔默-隆德动物研究伦理委员会(Dnr 5.8.18-05527/2019)的批准,并根据瑞典研究委员会的CODEX指南进行。

1. 准备工作

  1. 示 踪
    1. 制备人工脑脊液(126 mM NaCl,2.5 mM KCl,1.25 mM NaH2PO4,2 mM MgCl2,2 mM CaCl2,10 mM葡萄糖,26 mM NaHCO3;pH 7.4)
    2. 在500μL人造脑脊液中,加入10毫克与Alexa Fluor 647(BSA-647)结合的牛血清(BSA)中的白蛋白。
    3. 以5,000× g 离心5分钟,并使用上清液。
  2. 套管
    1. 将 1 mL 注射器连接到静脉注射 (IV) 管路的母 Luer 连接上,3 路抽头,延伸 10 cm。
    2. 将18 G针连接到公头。
    3. 打开 3 向止动锁,以保持从针头到注射器的连续性。
    4. 小心地拔出针头的鞘,并将约300μL盐水吸入IV管路。
    5. 从盐水中取出针头,然后继续引入一些空气,在IV管中产生一个小气泡(5-10毫米)。
    6. 将针头放入示踪剂中,并吸出所有500μL示踪剂。静脉输液管中的生理盐水应由气泡明显分离。
    7. 丢弃针头并关闭 3 向停止锁。
  3. 动物
    1. 通过肌内注射(i.m)注射帕他明(3.75mg / kg)和唑西泮(3.75mg / kg)和右美托咪定(37.5μg/ kg)来镇静猪。等待它变得无意识。
    2. 通过将20 G套管插入耳静脉来准备静脉注射管。
      注意:通过插管注入5-10毫升生理盐水,确保插管在静脉中。如果静脉缺失,耳朵组织中的小水肿会注意到这一点。
    3. 对猪进行插管,以确保在整个手术过程中可以调节呼吸频率。
      注意:通过对猪的胸部施加压力并确保成功插管,并确认强行排出的空气正在从插管管中流出。
    4. 将插管连接到呼吸频率设置为14次/分钟的呼吸机。
    5. 将脉搏血氧仪和袖带连接到尾部,以监测心率 (HR)、血压 (BP) 和血氧饱和度 (sats)。插入直肠温度计以监测核心温度。
    6. 在盐水中准备一袋氯胺酮(5mg / kg / min),咪达唑仑(0.25mg / kg / min)和芬太尼(2.5μg/ kg / min)的静脉注射,并开始以约2滴/ s的速度通过耳静脉输注。
      注意:在整个手术过程中,可能需要根据动物的生命体征增加或减少输注速率。
    7. 将猪放在俯卧位置,触诊动物头颈部的后部,以定位和标记第一胸椎的枕嵴和脊柱以及每只耳朵的底部。
    8. 沿着纵轴在波峰和椎骨之间画一条直线。通过跟随颅底,从耳嵴到每只耳朵的底部绘制两条线(图1A)。
    9. 通过仔细夹住尾巴并观察没有尾巴反射来检查动物是否处于深度睡眠状态。
      注意:如果动物仍然具有反射性,则应逐渐增加麻醉输注速率,直到动物不再表现出反射。

2. 手术

注意:在整个手术过程中,有必要至少有一名助手来抽吸轻度出血并烧灼任何切断的血管。

  1. 使用带有#21刀片的手术刀,沿着纵线向下到肌肉做一个真皮切口。
  2. 沿着肩膀进一步延伸两个垂直的真皮切口,长10-15厘米。
  3. 从枕嵴开始,沿着线向下切开真皮切口,直到每只耳朵的底部。
  4. 用解剖学镊子抓住枕嵴处形成的皮肤角,通过将手术刀刀片轻轻地在筋膜上滑动,从喙部移动到尾部,小心地将皮肤与下面的肌肉分开。一旦在五个切口之后切除皮肤,斜方肌的部分应该可见。
  5. 用手术刀做一个纵向切口,深约1厘米,斜方肌在中线聚集在一起。
    注意:当切开肌肉时,出血倾向增加,因此烧灼剂应该准备好。如果较大的血管被切断,一个人应该用纱布快速压缩它,而另一个人使用烧灼器。
  6. 使用直镊子和弯曲手术镊子的组合,沿着肌肉的纵向切口进行钝性解剖。这将分离斜方肌的腹部,以及潜在的半棘头双发性肌。
  7. 用手术刀切断任何持续存在的肌纤维,并继续钝性解剖,直到半脊柱弯曲复合物变得可见。
  8. 切断斜方肌和半棘侧双翅肌沿颅骨后侧的起源。用手术刀进行钝性解剖,小心地纵向分开它们,直到半棘形复合体完全可见。
  9. 使用自保持牵开器缩回斜方肌和半棘肌。
  10. 当半棘形复合体的腹部在中线聚集在一起时,用手术刀做一个约1厘米深的纵向切口。
    注意:请注意此处是否有任何额外的出血。出血可以通过棉签和烧灼的组合来管理。
  11. 使用手术钳,沿着肌肉腹部之间的纵向切口进行钝性解剖,直到可触及图谱(CI)的背侧。
  12. 切断颅骨后侧半脊柱复合肌的起源,并通过手术刀和钝性解剖将其与下颌骨纵向分开。
  13. 使用另一组自保留牵开器收回半棘睑复合肌。
  14. 使用手术刀,小心地去除图谱与颅底相遇的区域上的任何剩余组织。
  15. 将一只手臂放在动物的脖子下面,一根手指放在地图集和头骨的交界处,同时抬高头部并弯曲颈部,同时用手指触诊,用另一只手露出大蓄水池。
    注意:触诊时,大蓄水池可识别为坚固的弹性结构,随着手指释放压力而有少量反弹。

3. 插管和注射

注意:此步骤还需要至少两个人,并且在动物头部抬高和颈部弯曲的情况下进行。

  1. 确保一个人抬高并弯曲动物的头部和颈部,而另一个人则触诊大蓄水池,记下其解剖位置。
  2. 缓慢而小心地将22 G套管通过硬脑膜引入,并以与纵轴的倾斜角度进入大水池。
    注意:不要将套管插入太深,因为这会对大脑造成损害。知道插管插入多远需要了解套管刺穿硬脑膜的感觉的经验。从本质上讲,就像硬脑膜被刺穿一样,套管足够深,可以成功注射示踪剂。这个深度大约是3-5毫米,但会根据动物的大小或年龄而有所不同。应通过可视化清晰的脉动性脑脊液在导管上行,立即发现成功的插管。为了获得最佳结果,建议事先在安乐死动物中进行几次插管,以了解硬膜穿孔。
  3. 从套管中取出针头,并在锁上盖上盖子。
  4. 首先,在套管进入组织的地方涂抹超强胶和加速器,然后应用牙科水泥。等待5分钟,让水泥变硬。
  5. 小心地从套管上取下盖子,并将先前制备的IV线龙头的公端用示踪剂延伸10厘米连接到套管上。
  6. 用手或使用微量输注泵以100μL/min的速率缓慢注入示踪剂。取下延伸10厘米的3向IV线水龙头,并用盖子代替。示踪剂现在应该在套管底部可见脉动(补充视频1)。
    注意:如果用手注射,请这样做,直到示踪剂在套管轴中仍然可见,大约在牙胶覆盖轴的地方上方约1-2毫米处。
  7. 注射后,将沙袋放在脖子下面以保持一些屈曲。然后头部可以被释放,动物处于俯卧的休息位置。
  8. 松开自我保留的牵开器,并像以前一样放置肌肉。使用手术毛巾夹将皮肤聚集在肌肉上。
  9. 用纱布盖住毛巾夹和切口,然后用毯子盖住,以限制热量损失。
  10. 让示踪剂循环所需的时间,然后通过i.v.对动物实施安乐死。戊巴比妥注射液(140毫克/公斤)。通过用听诊器听诊时没有心音来确认安乐死。

4. 脑提取和处理

  1. 使用20片手术刀,将纵向真皮切口从枕嵴延伸到鼻子上方约7厘米处。
  2. 使用手术刀反射覆盖在颅骨背侧的皮肤。
    注意:有几种方法可以逐个动物地切割和移除猪头骨的背侧。以下是此实验中最常用的过程。
  3. 使用手持式紧凑型锯,在颅骨上做一个日冕切口,在从颅骨中看到的两条大静脉上方约3厘米处。从日冕切口延伸到另外两个垂直切口,再延伸两个进一步的切口,以使垂直切口在中线处结合在一起。
    注意:在进行颅骨切口时,请牢牢握住锯子,因为在第一次接触骨骼或组织时,锯子往往会拉开,这可能导致严重伤害。
  4. 确保颅骨切口穿过骨头的整个厚度,方法是在每个切口上用锤子和窄凿子(10毫米)跟进。
  5. 使用锤子,最后将宽凿子(25-30毫米)敲入日冕切口。用一个人支撑头部,确保另一个人在凿子上施加杠杆以打开背颅。
  6. 切除背部颅骨碎片后,使用弯曲的手术剪刀解剖上覆的硬脑膜。
  7. 使用刮刀从小脑到喙侧严重切断脊髓。然后继续从前面引导大脑下方的刮刀,切断嗅球,垂体和颅神经。
  8. 将刮刀放在小脑后面,施加相当大的压力,使大脑从颅腔中移开,一旦松动,就小心地将其抬起。
  9. 立即将组织浸入4%多聚甲醛中过夜,固定整个大脑。
    注意:在此步骤之后,可以使用立体镜进行全脑成像(图1E)。
  10. 第二天,使用鲑鱼刀制作大脑的冠状切片,并通过组织浸入4%多聚甲醛中过夜固定切片。
  11. 最后,将切片放入PBS中的0.01%叠氮化物中以长期储存。

结果

一旦猪失去知觉,它就会被触诊,其表面解剖结构被标记,从枕嵴(OC)开始,朝胸椎(TV)和每个耳基(EB)工作。正是沿着这些路线做了真皮切口(图1A)。将包括斜方肌、双侧半棘肌和半棘肌复合体在内的三个肌肉层切除并用两组自保留牵开器保持打开,以暴露大水池(CM)(图1B)。然后将头部弯曲以打开颅骨后部和图谱之间的空间,并便于进入C...

讨论

本文描述了在猪中执行大蓄水池直接插管的详细方案,包括必要的制备、外科手术、示踪剂输注和脑的提取。这需要具有与大型动物打交道的经验和认证的人。如果正确执行,这允许将具有保证的所需分子直接递送到CSF中,之后可以使用一系列不同的高级光成像模式来探索大型哺乳动物中高分辨率的CSF分布和淋巴功能。

重要的是要注意,尽管这与啮齿动物的蓄水池大插管相?...

披露声明

作者没有什么可透露的。

致谢

这项工作得到了Knut和Alice Wallenberg基金会,Hjärnfonden,Wenner Gren基金会和Crafoord基金会的支持。

材料

NameCompanyCatalog NumberComments
0.01% azide in PBSSigmaaldrichS2002
18G needleMediq
1ml SyringeFischerSci15849152
20G cannulaMediqNA
22G cannulaMediqNA
4% paraformaldehydeSigmaaldrichP6148
Anatomical forcepsNANA
Bovine serum albumin Alexa-Fluor 647 ConjugateThermoFischerA347852 vials (10mg)
CaCl2SigmaaldrichC1016
ChiselClasOhlson40-8870
Dental cementAgnthos7508
compact sawClasOhlson40-9517
GlucoseSigmaaldrichG8270
HammerClasOhlson40-7694
Insta-Set CA AcceleratorBSI-IncBSI-151
IV line TAP, 3-WAYS with 10cm extensionBbraunNA
KClSigmaaldrichP9333
Marker penNANA
MgCl2SigmaaldrichM8266
MilliQ waterNANA
NaCLSigmaaldrichS7653
NaH2PO4SigmaaldrichS8282
NaHCO3SigmaaldrichS5761
No. 20 scalpel bladeAgnthosBB520
No. 21 Scalpel bladeAgnthosBB521
No. 4 Scalpel handleAgnthos10004-13
SalineMediqNA
Salmon knifeFiskersNA
Self-retaining retractorsNANA
SuperglueNANA
Surgical curved scissorsNANA
Surgical forcepsNANA
Surgical towel clampsNANA

参考文献

  1. Redzic, Z. B., Segal, M. B. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Advanced Drug Delivery Reviews. 56 (12), 1695-1716 (2004).
  2. Sakka, L., Coll, G., Chazal, J. Anatomy and physiology of cerebrospinal fluid. European Annals of Otorhinolaryngology, Head and Neck Diseases. 128 (6), 309-316 (2011).
  3. Nedergaard, M. Garbage truck of the brain. Science. 340 (6140), 1529-1530 (2013).
  4. Iliff, J. J., et al. A Paravascular pathway facilitates csf flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid B. Science Translational Medicine. 4 (147), (2012).
  5. Xie, L., et al. Sleep drives metabolite clearance from the Adult Brain. Science. 342 (6156), 373-378 (2013).
  6. Mestre, H., et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife. 7, 40070 (2018).
  7. Ringstad, G., et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight. 3 (13), 121537 (2018).
  8. Lundgaard, I., Wang, W., Eberhardt, A., Vinitsky, H. S., Cameron, B. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Scientific Reports. , 1-16 (2018).
  9. Munk, A. S., et al. PDGF-B is required for development of the glymphatic system. Cell Reports. 26 (11), 2955-2969 (2019).
  10. Plog, B. A., et al. Transcranial optical imaging reveals a pathway for optimizing the delivery of immunotherapeutics to the brain. JCI Insight. 3 (20), 1-15 (2018).
  11. Bechet, N. B., et al. Light sheet fluorescence micrscopy of optically cleared brains for studying the glymphatic system. Journal of Cerebral Blood Flow & Metabolism. 40 (10), 1975-1986 (2020).
  12. Xavier, A. L. R., et al. Cannula implantation into the cisterna magna of rodents. Journal of Visualized Experiments. (135), e57378 (2018).
  13. Ramos, M., et al. Cisterna magna injection in rats to study glymphatic function. Methods in Molecular Biology. 1938, (2019).
  14. Sweeney, A. M., et al. in vivo imaging of cerebrospinal fluid transport through the intact mouse skull using fluorescence macroscopy. Journal of visualized experiments. (149), e59774 (2019).
  15. Eide, P. K., Ringstad, G. MRI with intrathecal MRI gadolinium contrast medium administration: A possible method to assess glymphatic function in human brain. Acta Radiologica Open. 4 (11), 205846011560963 (2015).
  16. Ringstad, G., Vatnehol, S. A. S., Eide, P. K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 140 (10), 2691-2705 (2017).
  17. Kornum, B. R., Knudsen, G. M. Cognitive testing of pigs (Sus scrofa) in translational biobehavioral research. Neuroscience and Biobehavioral Reviews. 35 (3), 437-451 (2011).
  18. Bèchet, N. B., Shanbhag, N. C., Lundgaard, I. Glymphatic function in the gyrencephalic brain. Journal of Cerebral Blood Flow & Metabolism. , (2021).
  19. Raghunandan, A., et al. Bulk flow of cerebrospinal fluid observed in periarterial spaces is not an artifact of injection. bioRxiv. , (2020).
  20. D'Angelo, A., et al. Spinal fluid collection technique from the atlanto-occipital space in pigs. Acta Veterinaria Brno. 78 (2), 303-305 (2009).
  21. Ma, Q., et al. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathologica. 137 (1), 151-165 (2019).
  22. Hablitz, L. M., et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Science Advances. 5 (2), 5447 (2019).
  23. Mestre, H., et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nature Communications. 9 (1), 4878 (2018).
  24. Pleticha, J., et al. Pig lumbar spine anatomy and imaging-guided lateral lumbar puncture: A new large animal model for intrathecal drug delivery. Journal of Neuroscience Methods. 216 (1), 10-15 (2013).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

172

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。