登录

需要订阅 JoVE 才能查看此. 登录或开始免费试用。

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This work demonstrates the use of a multimodal ultrasound-based imaging platform for noninvasive imaging of ischemic stroke. This system allows for the quantification of blood oxygenation through photoacoustic imaging and impaired perfusion in the brain through acoustic angiography.

Abstract

Presented here is an experimental ischemic stroke study using our newly developed noninvasive imaging system that integrates three acoustic-based imaging technologies: photoacoustic, ultrasound, and angiographic tomography (PAUSAT). Combining these three modalities helps acquire multi-spectral photoacoustic tomography (PAT) of the brain blood oxygenation, high-frequency ultrasound imaging of the brain tissue, and acoustic angiography of the cerebral blood perfusion. The multi-modal imaging platform allows the study of cerebral perfusion and oxygenation changes in the whole mouse brain after stroke. Two commonly used ischemic stroke models were evaluated: the permanent middle cerebral artery occlusion (pMCAO) model and the photothrombotic (PT) model. PAUSAT was used to image the same mouse brains before and after a stroke and quantitatively analyze both stroke models. This imaging system was able to clearly show the brain vascular changes after ischemic stroke, including significantly reduced blood perfusion and oxygenation in the stroke infarct region (ipsilateral) compared to the uninjured tissue (contralateral). The results were confirmed by both laser speckle contrast imaging and triphenyltetrazolium chloride (TTC) staining. Furthermore, stroke infarct volume in both stroke models was measured and validated by TTC staining as the ground truth. Through this study, we have demonstrated that PAUSAT can be a powerful tool in noninvasive and longitudinal preclinical studies of ischemic stroke.

Introduction

Blood transports oxygen (via the hemoglobin protein) and other important nutrients to tissues in our bodies. When the flow of blood through tissues is interrupted (ischemia), severe damage to the tissues can occur, the most immediate effects of which are due to a lack of oxygen (hypoxia). Ischemic stroke is the result of interrupted blood flow to a certain region of the brain. The brain damage resulting from an ischemic stroke can occur within minutes of a vessel blockage, and can often have debilitating and lasting effects1,2. A highly valuable strategy to evaluate the physiopathology after ischemic ....

Protocol

All animal procedures were approved by the Duke University Medical Center Animal Care and Use Committee and were conducted in accordance with the United States Public Health Service's Policy on Humane Care and Use of Laboratory Animals. Male and female C57BL/6J mice (see Table of Materials) were used for these studies. A minimum of three animals were imaged per stroke model group. See Figure 2 for the workflow followed in this protocol.

Representative Results

Imaging of blood vessel morphology in the brain
AA generates blood vessel morphology images by exciting microbubbles in the circulatory system at their resonant frequency and receiving the super harmonic response of the microbubbles. By using the customized ramp (Figure 2C) attached to a manually adjustable stage, we can image the mouse brain with AA mode at two different focal depths. When deeper regions are targeted, more superficial regions (such as the cerebral cor.......

Discussion

There are a few vital aspects of this method that, if done incorrectly, can lead to significantly decreased image quality and quantitative analysis. The most commonly occurring result of user-error in PAUSAT images is either a lack of signal or very low signal strength, both of which can occur for a variety of reasons. One such reason is a problem with the acoustic coupling. Large air bubbles in the water surrounding the mouse's head during imaging can often block the ultrasound from travelling to or from the transdu.......

Acknowledgements

The authors would like to acknowledge the engineering team at SonoVol Inc. for their technical support. This work was partially sponsored by the American Heart Association Collaborative Sciences Award (18CSA34080277), to J. Yao and W. Yang; The United States National Institutes of Health (NIH) grants R21EB027981, R21 EB027304, RF1 NS115581 (BRAIN Initiative), R01 NS111039, R01 EB028143; The United States National Science Foundation (NSF) CAREER award 2144788; the Chan Zuckerberg Initiative Grant (2020-226178), to J. Yao; and NIH grants R21NS127163 and R01NS099590 to W. Yang.

....

Materials

NameCompanyCatalog NumberComments
20 GA catheterBD Insyte Autoguard Winged381534For mouse intubation
2,3,5-Triphenyltetrazolium chlorideSigmaT8877Necessary for TTC-staining brain for validation
532nm LaserQuantelQ-smart 850Laser used to pump the OPO for PAT
Automatic Ventilator Rovent Jr.Kent ScientificRV-JRTo keep mice under anesthesia during surgical procedure
Black braided silk 4-0 USPSurgical SpecialtiesSP116Used for sutures on the neck for pMCAO surgery
BupivacaineHospira0409-1159-18Used prior to closing wounds during surgical procedure
C57BL/6 MiceJackson Lab#000664Mice used for studying ischemic stroke (2-6 month old male/female)
Clear sutureEthicon8606Used for closing wound (PT stroke and pMCAO). A clear suture won't interfere with PAT
Cold Light LEDSchottKL 1600Needed to create PT stroke
Disposable Razor BladeAccutec Blades74-0002For sectioning mouse brain
Electric drillJSDAJD-700Used to expose MCA during pMCAO procedure
Electrocauterization toolWet-FieldWet-Field Bipolar-RGStops blood flow after drilling during pMCAO procedure
Hair removal gelVeet8282651Used to remove hair from mouse prior to imaging
High Temperature Cautery Loop TipBOVIE Medical CorporationREF AA03Used to avoid bleeding when separating the temporal muscle from the skull
IR Detector CardThorlabsVRC5Used to ensure light path is aligned
Laser Power MeterOphirStarBright, P/N 7Z01580Can be used to calibrate the laser energy prior to imaging
Laser Speckle Imaging SystemRWD Life Science Co.RFLSI-IIICan be used to validate stroke surgery success
Lubricant Eye OintmentSootheAB31336Can be used to avoid drying of the eyes
Manually adjustable stageThorlabsL490Used with custom ramp for multiple focal depth AA imaging
Modified Vega Imaging SystemPerkin ElmerLLA00061System containing both B-mode/AA and PAT transducers
Optical Parametric OscillatorQuantelversaScan-L532Allows for tuning of excitation wavelength in a large range
Programmable Ultrasound SystemVerasonicsVantage 256Used for PAT part of system
Rose BengalSigma330000Necessary to induce PT stroke
SutureLOOKSP116Used for permanent ligation of CCA
Temperature ContollerPhysitempTCAT-2Used to maintain stable body temperature of mice during procedures
VesselVue MicrobubblesPerkin ElmerP-4007001Used for acoustic angiography (2.43 × 10^9 microbubbles/mL)

References

  1. Durukan, A., Tatlisumak, T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacology Biochemistry and Behavior. 87 (1), 179-197 (2007).
  2. Vander Worp, H. B., van Gijn, J.

Explore More Articles

Photoacoustic ImagingUltrasound ImagingAngiographic TomographyIschemic StrokeBrain ImagingNoninvasive ImagingPAUSATMiddle Cerebral Artery OcclusionPhotothrombotic Stroke ModelCerebral PerfusionBlood OxygenationMulti modal Imaging

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。