需要订阅 JoVE 才能查看此. 登录或开始免费试用。

本文内容

  • 摘要
  • 摘要
  • 引言
  • 研究方案
  • 结果
  • 讨论
  • 披露声明
  • 致谢
  • 材料
  • 参考文献
  • 转载和许可

摘要

这里介绍的是使用调幅电形成方法对人类红细胞进行机械疲劳测试的方案。这种通用方法可用于测量悬浮液中生物细胞形态和生物力学特性的系统变化。

摘要

红细胞(RBC)以其显着的变形性而闻名。它们在通过微循环时反复发生相当大的变形。在生理老化的红细胞中可见变形性降低。 现有的测量细胞变形性的技术不容易用于测量疲劳,即由循环负荷引起的细胞膜逐渐退化。我们提出了一种协议,用于在微流体通道中使用基于振幅偏移键控(ASK)调制的电形成来评估循环剪切应力对红细胞的机械降解。简而言之,微流体通道中的叉指电极使用信号发生器以射频的低压交流电激励。悬浮液中的红细胞响应电场并表现出正介电泳(DEP),将细胞移动到电极边缘。然后由于施加在两半电池上的力,细胞被拉伸,导致单轴拉伸,称为电形成。通过改变激励波的振幅,可以很容易地调整剪切应力的水平和由此产生的变形。这样就可以量化红细胞的非线性变形性,以响应高通量下的小变形和大变形。使用ASK策略修改激励波可诱导具有可编程负载速率和频率的循环电形成。这为表征红细胞疲劳提供了一种方便的方法。我们的ASK调制电形成方法首次能够直接测量循环载荷引起的红细胞疲劳。它可以用作一般生物力学测试的工具,用于分析其他细胞类型和患病条件下的细胞变形性和疲劳,也可以与控制细胞微环境的策略相结合,例如氧张力和生物和化学线索。

引言

红细胞(RBC)是人体中最易变形的细胞1。它们的变形性与其携氧功能直接相关。已发现红细胞变形性降低与几种红细胞疾病的发病机制相关2。变形性测量使我们更好地了解了红细胞相关疾病3。红细胞的正常寿命可以从 70 天到 140天不等4。因此,测量它们的变形性如何随着老化过程而降低非常重要,例如,它们由于循环剪切应力引起的疲劳行为3

在高通量下测量红细胞变形性具有挑战性,因为皮克顿尺度力(~10-12 N)施加到单个细胞上。在过去的十年中,已经开发了许多技术来测量细胞变形性5。红细胞水平的变形测量可以通过移液管抽吸和光镊进行,而批量分析则通过渗透梯度 ektacyto 仪完成。Ektacytometry分析提供了丰富的数据,这为诊断血液疾病提供了机会6,7。红细胞的变形性也可以通过胶体探针原子力显微镜使用粘弹性理论进行分析。该方法应用计算分析来估计RBC的弹性模量,同时考虑了时变和稳态响应。单个红细胞的变形能力可以通过使用单细胞微室阵列方法进行测量。该方法通过膜和胞质荧光标记物分析每个细胞,为红细胞变形性和复杂红细胞群中细胞特征的分布提供信息,以检测血液系统疾病8

疲劳是工程材料和生物材料性能退化的关键因素。疲劳测试可以对承受循环载荷的结构的完整性和寿命进行定量分析。长期以来,由于缺乏一种通用的、易于应用的、高通量和定量的方法来实施细胞膜中的循环变形,生物细胞疲劳分析一直受到阻碍。这可以通过在微流体环境中利用电信号调制和电形成技术来实现。本文通过开-关键控(OOK)调制应用幅度移键控(ASK)技术作为数字调制。键控的概念是指通过通道传输数字信号,这需要正弦波载波信号才能正常工作9。开和关时间可以设置为相等。在ON键控下,红细胞在暴露于由非均匀电场产生的外部电形成力(Fdep10 时进入变形状态。在“脱键”下,RBC 处于放松状态。我们观察到红细胞的疲劳,即随着加载周期的增加,它们的拉伸能力逐渐下降。红细胞中疲劳诱导的变形性丧失可以提供对血液循环过程中累积的膜损伤的见解,使我们能够进一步研究细胞疲劳与疾病状态之间的联系。

在这里,我们提供了有关如何通过ASK调制电形成在微流体装置中实施红细胞疲劳测试的分步程序,以及微流体装置,机械负载和微观想象等系统设置,以表征红细胞机械变形的逐渐退化。

研究方案

去识别的人全血是商业获得的。涉及血液样本的工作是在生物安全2级实验室进行的,该实验室利用佛罗里达大西洋大学机构生物安全委员会批准的协议进行。

1. 微流控装置制备

  1. 在塑料 14 厘米培养皿内侧用胶带将用于微流体通道设计的 SU-8 主硅晶片用胶带粘住,并用 N2 气体清洁。
  2. 在纸杯中称取60克聚二甲基硅氧烷(PDMS)基料和6克PDMS固化剂。用木刮刀将两部分混合,直到混合物呈白色。
  3. 将PDMS混合物倒入含有硅晶片的塑料培养皿中。将培养皿放入带有3通旋塞阀的真空干燥器中。转动旋塞阀的阀门,将真空连接到干燥器室,以去除PDMS中的气泡。
  4. 通过调整旋塞阀,在大约 5 分钟的周期内将干燥器室连接到环境,将空气重新引入干燥器室。重复上述步骤,直到从通道特征中去除所有气泡。
  5. 将培养皿置于70°C的烤箱中4小时。时间过后,取出培养皿,让它冷却至室温,然后将其放在切割垫上。
  6. 使用手术刀,切掉硅晶圆上方的PDMS部分。将切口PDMS放在两张实验室包装膜之间。微通道的压痕和半透明薄膜之间形成的间隙有助于识别微流体通道的位置及其各自的入口和出口。
  7. 使用剃须刀片,从大型PDMS中切出单个通道。使用两种尺寸的活检打孔打孔3 mm入口孔和1.5 mm出口孔(图1A)。
  8. 将打孔通道放在干净的载玻片上,通道面朝上。将含有薄膜氧化铟锡 (ITO) 指叉电极的 20 mm x 15 mm 玻璃基板放在同一载玻片上,电极朝上。
  9. 轻轻地将带有PDMS和基材的载玻片放入等离子清洁器中。关闭燃气阀,打开泵开关,等待 2 分钟以获得 600 - 800 mTorr 的传感器读数。
  10. 打开电源开关并等待 30 秒。将射频电源旋钮从低到高,等待 1 分钟。
  11. 然后,通过将射频旋钮转到低电平、电源开关变为关闭、泵开关变为关闭并打开燃气阀来反转顺序。
  12. 打开等离子清洗器的腔室后,立即抬起并旋转PDMS,使通道侧朝下(180°)。将通道放在ITO基板的顶部。粘合过程已经开始。
  13. 使用镊子轻轻按下 PDMS 的角落约 3 秒。避免按压通道本身。
    注意:粘合过程在两个处理过的表面之间的物理接触时自发发生。
  14. 用23 G针头将灌注培养基装入1 mL注射器中。通过将针头直接插入入口孔然后释放介质来小心润湿通道。缓慢操作。不要引入气泡。孵育至少3分钟。
  15. 使用 10 μL 移液器吸头取出优质培养基。通过将 DEP 培养基插入通道,用 DEP 培养基清洗通道 3 次。始终保持通道湿润。

2. 测试治具

注意:测试夹具使用3D CAD软件设计,包括一个基础外壳单元和一个顶部单元(图1B)。然后,使用标准公差限制约为±3轴CNC铣床制造,使用电子卡尺(未显示)检查测试夹具的0.005英寸尺寸。体外生物力学测试不需要夹具的无菌性。

  1. 将焊丝预焊到两组弹簧活塞连接器的焊杯末端。
  2. 将弹簧活塞连接器插入顶部单元,并通过添加一滴环氧胶水形成永久粘合。

3.电形成工作缓冲液的制备

  1. 要制备DEP培养基,请使用秤称取12.75克蔗糖和0.45克葡萄糖。
  2. 将两种粉末溶解到装有 150 mL 去离子 (DI) 水和 3.5 mL 磷酸盐缓冲盐水 (PBS) 的单个容器中。
  3. 使用低量程电导率测试仪测量电导率并确保其为 0.04 S/m(图 2)。
    注意:可以使用不同的电导率值,这可能会改变合计 DEP 力11 的符号和大小。然而,电形成需要正的DEP力。
  4. 使用渗透压计确认渗透压在血浆的正常范围内,即275至295 mOsm / kg水(图3)。储存在4°C。DEP 培养基现已准备就绪。
  5. 在 15 mL 管中,将 0.5 g 牛血清白蛋白 (BSA) 溶解在 10 mL DEP 培养基中。充分混合。该设备的主要培养基现已准备就绪。

4. 细胞悬液的制备

  1. 用 1 mL PBS 以 268 x g 离心血液 3 分钟,洗涤 20 μL 全血。弃去上清液。
  2. 将红细胞重悬于 1 mL PBS 中。轻轻移液混合。以268× g 洗涤红细胞3分钟,弃去上清液。
  3. 使用 10 μL 微量移液器吸头提取 5 μL RBC 沉淀,并完全分配到 1 mL DEP 培养基中。通过以268× g 离心3分钟来洗涤细胞。
  4. 弃去上清液并将红细胞重悬于 1 mL DEP 培养基中。轻轻移液混合。
  5. 以268× g 洗涤红细胞3分钟,弃去上清液。将 2 μL 红细胞沉淀移液到 500 μL DEP 培养基中。现在制备的细胞悬液浓度在62 - 104个细胞/ μL12的范围内,可以使用标准细胞计数玻片进行确认。

5. 电形成设置和疲劳测试

  1. 将微流体装置放入测试夹具的底部。将夹具的顶部与设备对齐,并使用两组尼龙螺钉和螺母组装两个部件(图4)。
  2. 将测试夹具放在显微镜载物台上。在显微镜下找到一组所需的电极。
  3. 将与定位的电极组匹配的相应一对电极线连接到函数发生器的输出端子(图4)。
  4. 从微流体通道的 3 mm 入口处取出 5 μL DEP 培养基。使用 10 μL 移液器吸头将 5 μL 细胞悬液缓慢加载到入口中。
  5. 让细胞稳定1分钟。如有必要,在入口处添加额外的DEP培养基以将细胞推入通道。
  6. 在 20 倍放大镜下观察通道。使用 414/46 nm 带通滤光片来增强成像的对比度。
  7. 按下 正弦 波按钮并定义一个在3 MHz频率下幅度为2 VRMS 的正弦波。按 Mod 按钮启用调制。通过按 类型 选项将波形模式更改为 ASK。
  8. 将调制频率设置为 250 mHz,对应于 4 秒的加载-卸载周期(图 5A)。打开函数发生器的输出。
  9. 以每秒 10 帧 (fps) 的速度每 10 分钟录制一段 30 分钟的视频。

6. 红细胞变形的表征

  1. 使用视频编辑应用程序,按 Ctrl+O 打开上一步中记录.avi文件。使用时间轴选择感兴趣的帧,并通过按键盘上的 Home 键和 End 键将选择开始帧和结束帧设置为相同。
  2. 导出图像框。选择要为 JPEG 的输出格式,然后按 确定
  3. 打开 ImageJ 应用程序并加载上一步中保存的图像。首先,通过按 分析>设置测量 值来设置所需的测量值,并确保选中 “面积”、“周长 ”和 “拟合椭圆 ”复选框。按 确定
  4. 接下来,通过选择“图像 >类型”> 8 位将图像转换为灰度。
  5. 然后使用图像 >调整>阈值将图像转换为二进制。在“阈值”对话框中,根据需要调整两个滑块。按“ 应用” ,然后关闭“阈值”对话框。
  6. 选择 “分析>工具”>“ROI 管理器”。在ROI管理器中,按标有 “全部显示”的复选框。不要关闭此框。
  7. 选择 魔杖(描摹)工具,选择图像中适用的单元格,然后按键盘上的 T。所选单元格将被编号。可以再次选择新单元格。选择要测量的所有适用单元格。适用的细胞被标识为与其他细胞分离的细胞。在单个视场中,这些像元的数量可以从 50 到 200 个不等。
  8. 返回到“ROI 管理器”框,然后按 “度量”。这将打开“结果”框。标记为“主要”和“次要”的列分别是拟合椭圆长轴和短轴的长度(以像素为单位)。选择 “文件>另存为 ”,将测量值导出为 CSV 格式的文件。
  9. 使用任何适当的计算分析软件,计算主要和次要的商。

结果

当细胞悬液加载到微流体通道中时,观察到细胞的相对均匀分布。在函数发生器的信号输出(例如,简单的正弦波或ASK的键控相位)上,薄膜指叉电极产生非均匀的交流电场。悬浮细胞自发地响应这种电激发并表现出积极的DEP行为,即向具有较高场强的电极边缘移动。因此,细胞沿着电极的边缘排列,并且由于电形成而被拉伸。在键控阶段,红细胞由于电形成而拉伸;在非键化阶段,RBC 放宽(

讨论

DEP 力诱导正弦波的 ASK OOK 调制可用于长时间测试红细胞的机械疲劳。在该协议中,我们将体外疲劳测试限制在1小时,以防止对细胞变形能力的潜在不良代谢影响。可以使用ASK调制电形成技术对综合疲劳测试条件进行编程。加载频率、幅度和加载速率等参数都可以编程。加载频率可以编程为不同的值,以确定疲劳对加载频率的依赖性以及循环加载和静态加载之间的差异13

披露声明

作者没有什么可透露的。

致谢

这项研究由NSF / CMMI基于血红蛋白的人造氧气载体的机械生物学(#1941655)和NSF / CMMI健康和患病红细胞的动态和疲劳分析(#1635312)资助。

材料

NameCompanyCatalog NumberComments
Balance ScaleViBRAHT-224R
Bandpass filterBRIGHTLINE414/46 BrightLine HC
BD Disposable Syringes with Luer-Lok™ Tips, 1 mLFisher Scientific14-823-30
Biopsy Punches with Plunger System, 1.5 mmFisher Scientific12-460-403
Biopsy Punches with Plunger System, 3 mmFisher Scientific12-460-4071.5 mm and 3 mm diameter
Blunt needle, 23-gaugeBSTEANX001308N97
Bovin Serum AlbuminRMBIOBSA-BSH
CentrifugeSCILOGEX911015119999
Conical Tube, 50 mLFisher Scientific05-539-13
DextroseFisher ScientificMDX01455MilliporeSigma™
EC Low Conductivity meterecoTestr358/03
Eppendorf   Snap-Cap MicrocentrifugeTubeswww.eppendorf.com05-402-25
ExcelMicrosoft Graph plotting
Function GeneratorSIGLENTSDG830
Glass/ITO Electrode SubstrateOSSILAS161
ImageJNIHhttps://imagej.nih.gov/ij/
Inverted MicroscopeOLYMPUSIX81 - SN9E07015
Lab OvenQUINCY LAB (QL)MODEL 30GCEDigital Model
MatlabMathWorksGraph plotting
Micro Osmometer - Model 3300Advanced Instruments Inc.S/N: 03050397P
Parafilm Laboratory Wrapping FilmFisher Scientific13-374-12
Petri dishFALCONSKU=351006ICSI/Biopsydish 50*9 mm
Phosphate Buffered Saline (PBS)LONZA04-479Q
Plasma CleanerHarrick plasma PDCOOLNC0301989
SolidworksDassault SystemesCAD software
SucroseFisher Scientific50-188-2419
Vacuum DesiccatorSPBEL-ARTF42400-2121
Wooden spatulaFisher ScientificNC0304136Tongue Depressors Wood NS 6"

参考文献

  1. Kim, Y., Kim, K., Park, Y. Measurement techniques for red blood cell deformability: recent advances. Blood Cell—An Overview of Studies in Hematology. 10, 167-194 (2012).
  2. Safeukui, I., et al. Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen. Blood, The Journal of the American Society of Hematology. 120 (2), 424-430 (2012).
  3. Naghedi-Baghdar, H., et al. Effect of diet on blood viscosity in healthy humans: a systematic review. Electronic physician. 10 (3), 6563 (2018).
  4. Franco, R. S. Measurement of red cell lifespan and aging. Transfusion Medicine and Hemotherapy. 39 (5), 302-307 (2012).
  5. Matthews, K., Lamoureux, E. S., Myrand-Lapierre, M. -. E., Duffy, S. P., Ma, H. Technologies for measuring red blood cell deformability. Lab on a Chip. 22, 1254-1274 (2022).
  6. Kim, J., Lee, H., Shin, S. Advances in the measurement of red blood cell deformability: A brief review. Journal of Cellular Biotechnology. 1 (1), 63-79 (2015).
  7. Varga, A., Matrai, A. A., Barath, B., Deak, A., Horvath, L., Nemeth, N. Interspecies diversity of osmotic gradient deformability of red blood cells in human and seven vertebrate animal species. Cells. 11 (8), 1351 (2022).
  8. Doh, I., Lee, W. C., Cho, Y. -. H., Pisano, A. P., Kuypers, F. A. Deformation measurement of individual cells in large populations using a single-cell microchamber array chip. Applied Physics Letters. 100 (17), 173702 (2012).
  9. Al Safi, A., Bazuin, B. Toward digital transmitters with amplitude shift keying and quadrature amplitude modulators implementation examples. , 1-7 (2017).
  10. Zhang, J., Chen, K., Fan, Z. H. Circulating tumor cell isolation and analysis. Advances in Clinical Chemistry. 75, 1-31 (2016).
  11. Cottet, J., Fabregue, O., Berger, C., Buret, F., Renaud, P., Frénéa-Robin, M. MyDEP: a new computational tool for dielectric modeling of particles and cells. Biophysical Journal. 116 (1), 12-18 (2019).
  12. Haywood, M. Interpreting the full blood count. InnovAiT. 15 (3), 131-137 (2022).
  13. Qiang, Y., Liu, J., Dao, M., Suresh, S., Du, E. Mechanical fatigue of human red blood cells. Proceedings of the National Academy of Sciences. 116 (40), 19828-19834 (2019).
  14. Gharaibeh, B., et al. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nature Protocols. 3 (9), 1501-1509 (2008).
  15. Qiang, Y., Liu, J., Dao, M., Du, E. In vitro assay for single-cell characterization of impaired deformability in red blood cells under recurrent episodes of hypoxia. Lab on a Chip. 21 (18), 3458-3470 (2021).

转载和许可

请求许可使用此 JoVE 文章的文本或图形

请求许可

探索更多文章

JoVE 200

This article has been published

Video Coming Soon

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。