Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

In real-time functional magnetic resonance imaging (rtfMRI), brain activity is experimentally manipulated as an independent variable, and behavior is measured as a dependent variable. The protocol presented here focuses on the practical use of rtfMRI as a therapeutic tool for psychiatric disorders such as nicotine addiction.

Abstract

It has been more than a decade since the first functional magnetic resonance imaging (fMRI)-based neurofeedback approach was successfully implemented. Since then, various studies have demonstrated that participants can learn to voluntarily control a circumscribed brain region. Consequently, real-time fMRI (rtfMRI) provided a novel opportunity to study modifications of behavior due to manipulation of brain activity. Hence, reports of rtfMRI applications to train self-regulation of brain activity and the concomitant modifications in behavioral and clinical conditions such as neurological and psychiatric disorders [e.g., schizophrenia, obsessive compulsive Disorder (OCD), stroke] have rapidly increased.

Neuroimaging studies in addiction research have shown that the anterior cingulate cortex, orbitofrontal cortex, and insular cortex are activated during the presentation of drug-associated cues. Also, activity in both left and right insular cortices have been shown to be highly correlated with drug urges when participants are exposed to craving-eliciting cues. Hence, the bilateral insula is of particular importance in researching drug urges and addiction due to its role in the representation of bodily (interoceptive) states. This study explores the use of rtfMRI neurofeedback for the reduction in blood oxygen-level dependent (BOLD) activity in bilateral insular cortices of nicotine-addicted participants. The study also tests if there are neurofeedback training-associated modifications in the implicit attitudes of participants towards nicotine-craving cues and explicit-craving behavior.

Introduction

Neurofeedback is an operant conditioning procedure through which humans or animals can learn to modulate neural activity in one or more brain regions. Training typically leads to behavioral modifications1. In principle, brain signals from one or more circumscribed brain regions are transformed into sensory feedback (e.g., visual, auditory, or tactile feedback), which is provided to the participant for control of brain activity by operant conditioning or other forms of learning. In the reversal of the traditional neuroimaging paradigm, neurofeedback studies modulate brain activity as an independent variable and measure behavior as a dependent va....

Protocol

The Ethics Committee of the Medical Faculty of the University of Tübingen and Pontificia Universidad Católica de Chile approved the following rtfMRI protocol.

1. Hardware set-up

  1. The hardware represented in Figure 1 is prepared only once to set up the real-time export of the MRI data.
  2. Preparation of the MRI room is the same as the traditional fMRI measurement. Prepare the MRI room before arrival of the participant.
  3. Attach t.......

Representative Results

Four patients were recruited based on their scores on the Fagerström Test for Nicotine Dependence (FTND)45 questionnaire for medium-level nicotine dependence (FTND score >4) and the number of cigarettes smoked every day (>15). In addition, it was ensured that the participants did not have any tattoo or metallic implants as per MRI safety measures of the institution. Five rtfMRI sessions were performed for each participant, in which the first four sessions were conducted over 2 weeks (2 sessions pe.......

Discussion

Results from four participants demonstrate the possibility for cigarette smokers to learn to downregulate activation in the bilateral anterior insula in the presence of a craving-eliciting cues. Changes in the implicit and explicit smoking behaviors after neurofeedback training in the sample participant may be related to learned downregulation, as the participant did not go through any other clinical or experimental interventions during the course of the experiment. Change in the participant’s implicit behavior may.......

Acknowledgements

This study was supported by Comisión Nacional de Investigación Científica y Tecnológica de Chile (Conicyt) through Fondo Nacional de Desarrollo Científico y Tecnológico, Fondecyt Postdoctoral grant (no. 3100648) Fondecyt Regular(projects no. 1171313 and no. 1171320) and CONICYT PIA/Anillo de Investigación en Ciencia y Tecnología ACT172121.  

....

Materials

NameCompanyCatalog NumberComments
MATHSWORKMATLAB version 2014a
Presentation - Neurobehavioral SystemsPresentation version 18.0
Brain Innovation B.V.Turbo Brain Voyager Version 2.6 or 3.0

References

  1. Fernandez, T., et al. EEG and behavioral changes following neurofeedback treatment in learning disabled children. Clinical Electroencephalography. 34, 145-152 (2003).
  2. Scarapicchia, V., Brown, C., Mayo, C., Gawryluk, J. R.

Explore More Articles

Real time FMRINeurofeedbackInsular CortexNicotine AddictionSmokingCravingInteroceptive ProcessingCue induced CravingImplicit AttitudesExplicit Craving

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved