Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A protocol for Brillouin optical time-domain analyzers based on gain spectrum engineering is presented. Enhancements in the sensing performance, including sensing range and measurand resolution are achieved and the excess Brillouin intensity noise is studied. The protocol introduces a new way to enhance distributed Brillouin sensing performance.

Abstract

Demonstrated is a unique method for sensing performance enhancement in Brillouin optical time-domain analyzers (BOTDA). A Brillouin gain spectrum (BGS) is superimposed with two symmetric Brillouin loss spectra (BLS). This leads to a complex engineered spectrum shape that is more resistant to the sensing system noise. Instead of only one pump and probe interaction as in the conventional BOTDA setup, three optical probe waves are exploited, with one probe located in the BGS and the other two symmetrically in the BLS. Due to the resistance and insensitivity of the engineered spectrum shape to the noise, the sensing performance is enhanced by 60% and the measurand resolution is doubled.

Introduction

Distributed fiber sensing (DFS) is a unique mechanism that employs a whole fiber as a sensing medium. It has attracted a lot of interest due to the low fiber loss; small size; and the ability to be easily embedded in various structures, such as dams, bridges, and buildings, to perform environment surveillance as an artificial nerve system. In comparison to applying numerous traditional point sensors, such as fiber Bragg gratings (FBG), it provides a more efficient and cost-effective solution in a wide range of large-scale sensing tasks, such as infrastructure and structural health monitoring1.

Current distributed sen....

Protocol

1. Selecting optimized parameters for the spectrum engineering via simulation

  1. Model the engineered BGS gSBS(ν,z) with the equations28,29
    figure-protocol-283
    as implemented by, for example, the supplemental MATLAB script.
    NOTE: Here, G(ν) is the complex gain coefficient, calculated in the script as G_complex within the SB.......

Representative Results

Figure 3 shows the simulation results. Points with η < 1 in Figure 3A indicate a smaller frequency error (higher measurand resolution) with the engineered BGS. The lower the value was, the bigger the advantage. The minimum ratio was at m = 1, indicating that a multiprobe instead of multipump scheme can be carried out (see Discussion). Figure 3B

Discussion

The most critical step during the experiment is the equalization of the three probe powers so that m = 1 and symmetry between the two Brillouin loss spectra is achieved. Besides the separate power check using the power meter at Cir port 2, as presented in steps 4.9 and 4.10, the power equalization can be more precisely checked in the digitizer. By setting the RF 1 frequency to ~11 GHz (the fiber BFS) and switching off EDFA 3, the conventional trace with the peak gain can be recorded in the digitizer (trace I). T.......

Acknowledgements

Cheng Feng wishes to acknowledge the financial support from German Research Foundation (SCHN 716/13-1, 716/15-2, 716/18-1, 716/26-1) and Niedersächsisches Vorab (NL-4 Project "QUANOMET").

....

Materials

NameCompanyCatalog NumberComments
Current controller for laser diodeILX LightwaveLDX3220
DigitizerAcqiris SAU5309A-1039
Erbium doped fiber amplifier 1PhotopPTEDFA-A-PA-C-SCH-15
Erbium doped fiber amplifier 2LiCommOFA-TCH
Erbium doped fiber amplifier 3Calmar OptcomAMP-ST30
Erbium doped fiber amplifier 4PhotopPTEDFA-A-PA-C-SCH-15
Fiber Bragg grating 1Advanced Optics SolutionsT-FBG
Fiber Bragg grating 2Advanced Optics SolutionsT-FBG
Fiber under testofs
IsolatorGeneral PhotonicsS-15-NTSS
Laser diode3SP GroupA1905 LMI
Mach-Zehnder modulator 1AvanexIM10
Mach-Zehnder modulator 2AvanexIM10
Mach-Zehnder modulator 3AvanexIM10
Nanosecond driving board for semiconductor optical amplifierHighland TechnologyT160-9 (28A160-9C)
Optical coupler 10:90NewportBenchtop coupler/WDM
Optical coupler 50:50NewportBenchtop coupler/WDM
Optical spectrum analyzerHewlett Packard86145A
Optical switch 1JDSUSN12-1075NC
PhotodiodeThorlabsD400FC
Polarization scramblerGeneral PhotonicsPSY-101
Pulase generatorHewlett Packard8082A
Radio function generator 1AnritsuMG3692C
Radio function generator 2Agilent TechnologyE8257D
Radio function generator 3HTMT2100
Semiconductor optical amplifierThorlabsSOA1013SXS
Temperature controller for laser diodeILX LightwaveLDT5948
Temperature controller for semiconductor optical amplifierTektronixTED200
Variable optical attenuatorJDSUmVOA-A1With optical switch function

References

  1. Motil, A., Bergman, A., Tur, M. [INVITED] State of the art of Brillouin fiber-optic distributed sensing. Optics & Laser Technology. 78, 81-103 (2016).
  2. Kurashima, T., Tateda, M. Thermal effects on th....

Explore More Articles

Brillouin Optical Time domain AnalyzerBOTDABrillouin Gain SpectrumBrillouin Loss SpectrumGain Spectrum EngineeringSensing Performance EnhancementMultiple Probe WavesNoise ResistanceMeasurand Resolution

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved