The objective of this research was to form synthetic plant cell wall tissue using layer-by-layer assembly of nanocellulose fibrils and isolated lignin assembled from dilute aqueous suspensions. Surface measurement techniques of quartz crystal microbalance and atomic force microscopy were used to monitor the formation of the polymer-polymer nanocomposite material.
This protocol uses a balloon catheter to cause an intraluminal injury on the rat carotid artery and henceforth elicit neointimal hyperplasia. This is a well-established model for studying the mechanisms of vascular remodeling in response to injury. It is also widely used to determine the validity of potential therapeutic approaches.
Biofilms have complex interactions with their surrounding environment. To comprehensively investigate biofilm-environment interactions, we present here a series of methods to create heterogeneous chemical environment for biofilm development, to quantify local flow velocity, and to analyze mass transport in and around biofilm colonies.
A protocol for metabolic profiling of biological samples by capillary electrophoresis–mass spectrometry using a sheathless porous tip interface design is presented.
Here, we present a protocol for isolating gonadal tissue of larval zebrafish, which will facilitate investigations of zebrafish sex differentiation and maintenance.
The ruthenium-catalyzed olefination of electron-deficient alkenes with allyl acetate is described here. By using aminocarbonyl as a directing group, this external oxidant-free protocol has high efficiency and good stereo- and regioselectivity, opening a novel synthetic route to (Z,E)-butadiene skeletons.
This manuscript describes the novel setup and operating procedure of a photoacoustic microscopy and optical coherence tomography dual-modality system for noninvasive, label-free chorioretinal imaging of larger animals, such as rabbits.
Here, we present a protocol to introduce a rat model of central fatigue using the modified multiple platform method (MMPM).
Here, we present a protocol for performing an intracapsular rotary-cut procedure (IRCP), a modified laparoscopic intracapsular myomectomy that promotes fertility preservation.
This work presents the preparation of methionine functionalized biocompatible block copolymers (mBG) via the reversible addition-fragmentation chain transfer (RAFT) method. The plasmid DNA complexing ability of the obtained mBG and their transfection efficiency were also investigated. The RAFT method is very beneficial for polymerizing monomers containing special functional groups.
We have previously used a gold nanoparticle peptide hybrid to intravenously deliver a synthetic peptide, protein kinase C-delta inhibitor, which reduced ischemia-reperfusion-induced acute lung injury. Here we show the detailed protocol of the drug formulation. Other intracellular peptides can be formulated similarly.
The derivation of a flavonol is crucial for its application in healthcare and the food industry. Here, we provide a detailed protocol for the biosynthesis of a flavonol from a flavanone and discuss the crucial steps and its advantages over other approaches.
Here we present a training and testing system where a trainee can complete manual vascular reconstruction in vitro individually using a magnetic anchoring technique. The system can also be used to test the quality of reconstruction.
Here we present a protocol to characterize the complete biomolecular corona, proteins, and metabolites, acquired by nanomaterials from biofluids using a capillary electrophoresis – mass spectrometry approach.
Here, we describe a protocol for detection and localization of Drosophila embryo protein and RNA from collection to pre-embedding and embedding, immunostaining, and mRNA in situ hybridization.
Ubiquitination is a critical protein post-translational modification, dysregulation of which has been implicated in numerous human diseases. This protocol details how phage display can be utilized to isolate novel ubiquitin variants that can bind and modulate the activity of E3 ligases that control the specificity, efficiency, and patterns of ubiquitination.
The present protocol describes a simple and efficient method for collecting blood from the subclavian vein in rats. It enables rapid, timely, and easily identifiable sampling without anesthesia and obtains high-quality blood through repetitive sample collection.
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten