Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Method Article
To address mechanisms of demyelination and neuronal apoptosis in cortical lesions of inflammatory demyelinating disorders, different animal models are used. We here describe an ex vivo approach by using oligodendrocyte-specific CD8+ T-cells on brain slices, resulting in oligodendroglial and neuronal death. Potential applications and limitations of the model are discussed.
Death of oligodendrocytes accompanied by destruction of neurons and axons are typical histopathological findings in cortical and subcortical grey matter lesions in inflammatory demyelinating disorders like multiple sclerosis (MS). In these disorders, mainly CD8+ T-cells of putative specificity for myelin- and oligodendrocyte-related antigens are found, so that neuronal apoptosis in grey matter lesions may be a collateral effect of these cells. Different types of animal models are established to study the underlying mechanisms of the mentioned pathophysiological processes. However, although they mimic some aspects of MS, it is impossible to dissect the exact mechanism and time course of ‘‘collateral’’ neuronal cell death. To address this course, here we show a protocol to study the mechanisms and time response of neuronal damage following an oligodendrocyte-directed CD8+ T cell attack. To target only the myelin sheath and the oligodendrocytes, in vitro activated oligodendrocyte-specific CD8+ T-cells are transferred into acutely isolated brain slices. After a defined incubation period, myelin and neuronal damage can be analysed in different regions of interest. Potential applications and limitations of this model will be discussed.
Death of oligodendrocytes and destruction of the myelin sheath accompanied by loss of neurons and axons are typical pathological findings in grey matter lesions in individuals suffering from multiple sclerosis (MS)1,2. Cortical lesions can be divided so far in three different subtypes2: subpial, intracortical and leukocortical lesions. In comparison to white matter plaques, infiltrates are characterized by a predominance of CD8+ T-cells, suggesting their possible decisive role in grey matter inflammation3. Furthermore, oligoclonal expansions in blood, cerebrospinal fluid (CSF) and within inflammatory lesions can be found for CD8+ T-cells themselves4-6.
In line with this, it is assumed that CD8+ T-cells may be specific for different myelin proteins7,8. Indeed, CD8+ T-cells are found near oligodendrocytes and myelin sheaths9,10 that show MHC I expression11 and might therefore be responsible for the loss of the myelin sheath. This process is often seen together with extensive ‘‘collateral’’ neuronal and axonal damage within the central nervous system (CNS) grey matter1,2. In fact, direct and indirect death of oligodendrocytes and neurons is induced by CD8+ T-cells via two different mechanism: (i) cell membrane swelling and rupture due to the formation of cytotoxic granules following the release of perforins and granzymes and (ii) ligation to the Fas receptors or exposition of FasL on their surface8,12,13.
Different types of animal models are established to study the underlying mechanism of the mentioned processes. In this respect, primed CD8+ T-cells specific for autoantigens with induced expression in CNS glial cells, like oligodendrocytes or astrocytes, can be adoptively transferred to analyse ‘‘collateral’’ neuronal and axonal death in grey matter subsequently14,15. To perform such in vivo experiments is a big help to mimic some pathophysiological aspects of MS, however, this approach is not suited to resolve the underlying mechanism and kinetics of axonal damage and neuronal apoptosis.
To overcome these restrictions, an ex vivo approach was established to study the mechanisms and time course of neuronal cell death following a oligondendrocytes-directed CD8+ T-cell attack. Since only oligodendrocytes and therefore myelin sheath production should be targeted by immune cells, MHC class-I-restricted, ovalbumin (OVA)-reactive OT-I Tcells are used16. These cells are subsequently transferred into brain slices obtained from mice selectively expressing OVA in oligodendrocytes (ODC-OVA mice)17.
Access restricted. Please log in or start a trial to view this content.
Alle Versuche mit Mäusen sollte in Übereinstimmung mit den Richtlinien der jeweiligen institutionellen Tierpflege und Verwendung Ausschuss durchgeführt werden.
1. Allgemeine Kommentare zu Maus Experimente
2. Herstellung und Aktivierung von OVA-spezifischen CD8 + T-Zellen (OT-I)
3. Vorbereitung der akuten Hirnschnitten und Co-Kultur mit OT-I T-Zellen
Access restricted. Please log in or start a trial to view this content.
Nach einer Inkubation von Gehirnschnitten mit Oligodendrozyten gerichtete CD8 + T-Zellen, Oligodendrozyten und Neuronen Apoptose (2A bzw. 1C). Histologische Anzeichen von Apoptose (zB Caspase-3, Tunel) kann frühestens nach 3 h Inkubation nachgewiesen werden. Inkubationszeit sollte, um eine gute Qualität der Vorbereitung und reproduzierbare Ergebnisse garantieren nicht länger als 8 Stunden sein. Apoptotischen Zellen kann auf der ganzen Scheibe mit Übergewicht in m...
Access restricted. Please log in or start a trial to view this content.
Verschiedene Tiermodelle haben in den letzten Jahrzehnten, die pathologischen Merkmale der entzündlichen demyelinisierenden Erkrankungen wie MS-Adresse beschrieben. In-vivo-Maus- und Rattenmodelle sind weit verbreitet, um pathophysiologische Merkmale der Krankheit nachahmen, nämlich Analyse der Folgen der Demyelinisierung und Remyelinisierung Prozesse und der vermischten Episoden von Entzündungen und Neurodegeneration. Trotzdem nur eine ex vivo Ansatz erlaubt es, die genauen zugrunde liegenden Mecha...
Access restricted. Please log in or start a trial to view this content.
The authors declare that they have no competing financial interests.
This work was supported by the Interdisciplinary Center for Clinical Research (IZKF) Münster (SEED 03/12, SB), Deutsche Forschungsgemeinschaft (SFB TR128, TP B6 to S.G.M. ME3283/2-1 to S.G.M.) and by Innovative Medizinische Forschung, Münster (I-BI111316, SB and SGM).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
12-Well plate | Corning | 3513 | |
2-Mercaptoethanol | Gibco | 31350-010 | |
2-Methylbutan | Roth | 3927.1 | |
70 µm strainer | Falcon | 352350 | |
CaCl2 | Merck | 1.02382.0500 | calcium chloride |
CD8+-isolation kit | Miltenyi Biotech | 130-090-859 | |
D(+)-glucose | Merck | 1.08337.1000 | |
DMEM | Gibco | 31966-021 | warm in 37 °C water bath before use |
EDTA | Sigma | E5134 | |
FCS | PAA Laboratories | A15-151 | fetal calve serum |
Gentamicin | Gibco | 15750-060 | |
HEPES 1 M | Gibco | 15630-050 | |
IL-2 | Peprotech | 212-12 | |
Isofluran | Abbott | 05260-05 | |
KCl | Merck | 1.04933.0500 | potassium chloride |
KHCO3 | Sigma | P9144 | potassium hydrogen carbonate |
L-Glutamine | Gibco | 35050-038 | |
MgSO4 | Merck | 1.05886.0500 | magnesium sulfate |
NaCl | Sigma | 31434 | sodium chloride |
NaH2PO4 * H2O | Merck | 1.06346.0500 | sodium hydrogen phosphate |
NaHCO3 | Merck | 1.06329.0500 | sodium hydrogen carbonate |
NaOH | Merck | 1.09137.1000 | sodium hydroxide |
NH4Cl | Sigma | 213330 | ammonium chloride |
Non essential amino acid | Gibco | 11140-050 | |
OVA (257-264) | Genscript | RP10611 | ovalbumin |
PIPES | Sigma | P6757 | |
Sucrose | Merck | 1.07687.1000 | |
Tissue-Tek OCT | Sakura | 4583 |
Access restricted. Please log in or start a trial to view this content.
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten