Anmelden

Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.

In diesem Artikel

  • Zusammenfassung
  • Zusammenfassung
  • Einleitung
  • Protokoll
  • Repräsentative Ergebnisse
  • Diskussion
  • Offenlegungen
  • Danksagungen
  • Materialien
  • Referenzen
  • Nachdrucke und Genehmigungen

Zusammenfassung

Hier stellen wir ein Protokoll vor, um Metaboliten in seltenen Zelltypen genau und zuverlässig zu messen. Technische Verbesserungen, darunter eine modifizierte Mantelflüssigkeit zur Zellsortierung und die Generierung relevanter Blindproben, ermöglichen eine umfassende Quantifizierung von Metaboliten mit einem Input von nur 5000 Zellen pro Probe.

Zusammenfassung

Die zelluläre Funktion hängt entscheidend vom Stoffwechsel ab, und die Funktion der zugrunde liegenden Stoffwechselnetzwerke kann durch die Messung von niedermolekularen Zwischenprodukten untersucht werden. Um genaue und zuverlässige Messungen des Zellstoffwechsels zu erhalten, insbesondere bei seltenen Zelltypen wie hämatopoetischen Stammzellen, war es jedoch traditionell erforderlich, Zellen von mehreren Tieren zu poolen. Ein Protokoll ermöglicht es Forschern nun, Metaboliten in seltenen Zelltypen mit nur einer Maus pro Probe zu messen und gleichzeitig mehrere Replikate für häufigere Zelltypen zu generieren. Dadurch reduziert sich die Anzahl der Tiere, die für ein bestimmtes Projekt benötigt werden. Das hier vorgestellte Protokoll weist mehrere wesentliche Unterschiede zu herkömmlichen Metabolomik-Protokollen auf, wie z. B. die Verwendung von 5 g/L NaCl als Mantelflüssigkeit, die direkte Sortierung in Acetonitril und die gezielte Quantifizierung unter strenger Verwendung interner Standards, die genauere und umfassendere Messungen des Zellstoffwechsels ermöglichen. Trotz des Zeitaufwands für die Isolierung einzelner Zellen, die Fluoreszenzfärbung und die Sortierung kann das Protokoll die Unterschiede zwischen Zelltypen und medikamentösen Behandlungen weitgehend erhalten.

Einleitung

Der Stoffwechsel ist ein essentieller biologischer Prozess, der in allen lebenden Zellen abläuft. Stoffwechselprozesse umfassen ein riesiges Netzwerk biochemischer Reaktionen, die eng reguliert und miteinander verbunden sind und es den Zellen ermöglichen, Energie zu produzieren und essentielle Biomoleküle zu synthetisieren1. Um die Funktion von Stoffwechselnetzwerken zu verstehen, messen Forscher den Gehalt an niedermolekularen Zwischenprodukten in Zellen. Diese Zwischenprodukte dienen als wichtige Indikatoren für die Stoffwechselaktivität und können wichtige Erkenntnisse über die Zellfunktion liefern.

Die Massenspek....

Protokoll

Die Zucht und Haltung aller für dieses Protokoll verwendeten Mäuse erfolgte in einer konventionellen Tiereinrichtung am Max-Planck-Institut für Immunbiologie und Epigenetik (MPI-IE) gemäß den Vorschriften des Regierungspräsidiums Freiburg. Die Mäuse wurden mit CO2 und Gebärmutterhalsverrenkungen von FELASA B-geschultem Personal nach Richtlinien und Vorschriften eingeschläfert, die vom Tierschutzkomitee des MPI-IE und den lokalen Behörden genehmigt wurden. Es wurden keine Tierversuche durchgeführt und die Mäuse waren gesundheitlich unbedenklich.

HINWEIS: Hochempfindliche Analysemethoden wie die in diesem Protokoll verwendete LC-MS....

Repräsentative Ergebnisse

Die FACS-Sortierung ermöglicht die Isolierung sauberer Populationen verschiedener Zelltypen aus derselben Zellsuspension (Abbildung 2 und Abbildung 3). Die Spezifität dieser Methode beruht auf der Färbung der verschiedenen Zelltypen mit spezifischen Oberflächenmarkern (z. B. B-Zellen und T-Zellen aus der Milz) oder spezifischen Kombinationen von Oberflächenmarkern (z. B. HSCs und MPPs). Die Färbung intrazellulärer Marker erfordert typischerweise eine Perm.......

Diskussion

Die wichtigsten Schritte für die erfolgreiche Implementierung einer gezielten Metabolomik mit diesem Protokoll sind 1) eine robuste Färbe- und Gating-Strategie, die saubere Zellpopulationen liefert, 2) eine präzise Handhabung von Flüssigkeitsvolumina, 3) ein reproduzierbares Timing aller experimentellen Schritte, insbesondere aller Schritte vor der Metabolitenextraktion. Im Idealfall sollten alle Proben, die zu einem Experiment gehören, in einem Batch verarbeitet und gemessen werden, um Batch-Effekte zu minimieren

Offenlegungen

Die Autoren erklären, dass keine Interessenkonflikte bestehen.

Danksagungen

Die Autoren danken der Tiereinrichtung des Max-Planck-Instituts für Immunbiologie und Epigenetik für die Bereitstellung der in dieser Studie verwendeten Tiere.

....

Materialien

NameCompanyCatalog NumberComments
13C yeast extractIsotopic SolutionsISO-1
40 µm cell strainerCorning352340
Acetonitrile, LC-MS gradeVWR83640.32
ACK lysis bufferGibco104921Alternatively: Lonza, Cat# BP10-548E
Adenosine diphosphate (ADP)Sigma AldrichA2754
Adenosine monophosphate (AMP)Sigma AldrichA1752
Adenosine triphosphate (ATP)Sigma AldrichA2383
Ammonium Carbonate, HPLC gradeFisher ScientificA/3686/50
Atlantis Premier BEH Z-HILIC column (100 x 2.1 mm, 1.7 µm)Waters186009982
B220-A647Invitrogen103226
B220-PE/Cy7BioLegend103222RRID:AB_313005
CD11b-PE/Cy7BioLegend101216RRID:AB_312799
CD150-BV605BioLegend115927RRID:AB_11204248
CD3-PEInvitrogen12-0031-83
CD48-BV421BioLegend103428RRID:AB_2650894
CD4-PE/Cy7BioLegend100422RRID:AB_2660860
CD8a-PE/Cy7BioLegend100722RRID:AB_312761
cKit-PEBioLegend105808RRID:AB_313217
Dynabeads Untouched Mouse CD4 Cells Kit Invitrogen11415D
FACSAria IIIBD
Gr1-PE/Cy7BioLegend108416RRID:AB_313381
Heat sealing foilNeolabJul-18
IsoleucineSigma Aldrich58880
JetStream ESI SourceAgilentG1958B
LeucineSigma AldrichL8000
Medronic acidSigma AldrichM9508-1G
Methanol, LC-MS gradeCarl RothHN41.2
NaClFluka31434-1KG
PBSSigma AldrichD8537
Sca1-APC/Cy7BioLegend108126RRID:AB_10645327
TER119-PE/Cy7BioLegend116221RRID:AB_2137789
Triple Quadrupole Mass SpectrometerAgilent6495B
Twin.tec PCR plate 96 well LoBind skirtedEppendorf30129512
UHPLC AutosamplerAgilentG7157B
UHPLC Column ThermostatAgilentG7116B
UHPLC PumpAgilentG7120A
UHPLC Sample ThermostatAgilentG4761A

Referenzen

  1. Jang, C., Chen, L., Rabinowitz, J. D. Metabolomics and isotope tracing. Cell. 173 (4), 822-837 (2018).
  2. Lu, W., Su, X., Klein, M. S., Lewis, I. A., Fieh, O., Rabinowitz, J. D. Metabolite measurement: Pitfalls to avoid and practices to follow.

Nachdrucke und Genehmigungen

Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden

Genehmigung beantragen

Weitere Artikel entdecken

Immunologie und InfektionHeft 204

This article has been published

Video Coming Soon

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten