Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich. Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
Wir stellen ein Protokoll zur Rekonstitution von Membranproteinen und zur Verkapselung von Enzymen und anderen wasserlöslichen Komponenten in Lipidvesikeln von Submikrometer- und Mikrometergröße vor.
Wir stellen eine Methode vor, um komplexe Proteinnetzwerke in Vesikel einzubauen, an denen integrale Membranproteine, Enzyme und fluoreszenzbasierte Sensoren unter Verwendung gereinigter Komponenten beteiligt sind. Diese Methode ist relevant für das Design und den Bau von Bioreaktoren und die Untersuchung komplexer metabolischer Reaktionsnetzwerke außerhalb des Gleichgewichts. Wir beginnen mit der Rekonstitution von (mehreren) Membranproteinen zu großen unilamellären Vesikeln (LUVs) nach einem zuvor entwickelten Protokoll. Anschließend verkapseln wir ein Gemisch aus gereinigten Enzymen, Metaboliten und fluoreszenzbasierten Sensoren (fluoreszierende Proteine oder Farbstoffe) mittels Gefrier-Auftau-Extrusion und entfernen nicht eingebaute Komponenten durch Zentrifugation und/oder Größenausschlusschromatographie. Die Leistung der Stoffwechselnetzwerke wird in Echtzeit gemessen, indem das ATP/ADP-Verhältnis, die Metabolitenkonzentration, der interne pH-Wert oder andere Parameter durch Fluoreszenzauslesung überwacht werden. Unsere Membranprotein-haltigen Vesikel mit einem Durchmesser von 100-400 nm können mit bestehenden, aber optimierten Verfahren in riesig-unilamelläre Vesikel (GUVs) umgewandelt werden. Der Ansatz ermöglicht den Einbau löslicher Komponenten (Enzyme, Metaboliten, Sensoren) in mikrometergroße Vesikel, wodurch das Volumen der Bioreaktoren um Größenordnungen vergrößert wird. Das metabolische Netzwerk, das GUVs enthält, wird in mikrofluidischen Geräten gefangen, um sie mit optischer Mikroskopie zu analysieren.
Der Bereich der synthetischen Biologie von unten konzentriert sich auf die Konstruktion von (minimalen) Zellen 1,2 und metabolischen Bioreaktoren für biotechnologische 3,4 oder biomedizinische Zwecke 5,6,7,8. Die Konstruktion synthetischer Zellen bietet eine einzigartige Plattform, die es Forschern ermöglicht, (Membran-)Proteine unter genau definierten Bedingungen zu untersuchen, die denen der natürlichen Umgebung nachahmen
1. Allgemeine Vorbereitung
Die Rekonstitution von solubilisierten Membranproteinen in Liposomen erfordert die Destabilisierung von vorgeformten Vesikel. Die Zugabe geringer Mengen an Triton X-100 führt zunächst zu einer Erhöhung der Absorption bei 540 nm (A540) aufgrund einer Zunahme der Lichtstreuung durch die Schwellung der Vesikel (Abbildung 4). Der maximaleA-540-Wert ist der Punkt, an dem die Liposomen mit Detergens (Rsat) gesättigt sind, wonach jede weitere Zugabe von.......
Wir stellen ein Protokoll für die Synthese von (Membran-)Proteinen vor, die submikrometergroße Lipidvesikel (proteoLUVs) enthalten, und die Umwandlung von proteoLUVs in riesen-unilamelläre Vesikel (proteoGUVs). Das Protokoll sollte anwendbar sein für die Rekonstitution anderer Membranproteine13, 19, 30, 40 und die Verkapselung anderer Stoffwechselnetzwerke als der hier vorgestellten L-Argin.......
Die Autoren erklären, dass keine konkurrierenden finanziellen Interessen bestehen.
Die Autoren danken Aditya Iyer für die Klonierung des pBAD-PercevalHR-Gens und Gea Schuurman-Wolters für die Unterstützung bei der Proteinproduktion und -reinigung. Die Forschung wurde durch das NWO-Gravitationsprogramm "Building a Synthetic Cell" (BaSyC) gefördert.
....Name | Company | Catalog Number | Comments |
Agarose | Sigma Aldrich | A9414-25g | |
Amicon cut-off filter | Sigma Aldrich | Milipore centrifugal filter units Amicon Ultra | |
BioBeads | BioRad | 152-3920 | |
CHCl3 | Macron Fine Chemicals | MFCD00000826 | |
D(+)-Glucose | Formedium | - | |
D(+)-Sucrose | Formedium | - | |
DDM | Glycon | D97002 -C | |
Diethyl Ether | Biosolve | 52805 | |
DMSO | Sigma-Aldrich | 276855-100ml | |
DOPC | Avanti | 850375P-1g | |
DOPE | Avanti | 850725P-1g | |
DOPG | Avanti | 840475P-1g | |
DTT | Formedium | DTT005 | |
EtOH | J.T.Baker Avantor | MFCD00003568 | |
Extruder | Avestin Inc | LF-1 | |
Fluorimeter | Jasco | Spectrofluorometer FP-8300 | |
Glycerol | BOOM | 51171608 | |
Gravity flow column | Bio-Rad | 732-1010 | |
Hamilton syringe 100 µL | Hamilton | 7656-01 | |
Hamilton syringe 1000 µL | Hamilton | 81320 | |
Handheld LCP dispenser | Art Robbins Instruments | 620-411-00 | |
Handheld Sonicator | Hielscher Ultrasound Technology | UP50H | |
HCl | BOOM | x76021889.1000 | |
Imidazole | Roth | X998.4-250g | |
K2HPO4 | Supelco | 1.05099.1000 | |
KCl | BOOM | 76028270.1 | |
KH2PO4 | Supelco | 1.04873.1000 | |
Kimwipe | Kimtech Science | 7552 | |
Large Falcon tube centrifuge | Eppendorf | Centrifuge 5810 R | |
L-Arginine | Sigma-Aldrich | A5006-100G | |
Light microscope | Leica | DM LS2 | |
L-Ornithine | Roth | T204.1 | |
LSM Laser Scanning Confocal Microscope | Zeiss | LSM 710 ConfoCor 3 | |
MgCl2 | Sigma-Aldrich | M2670-1KG | |
Microfluidic chip | Homemade | PDMS based | DOI: https://doi.org/10.1039/C8LC01275J |
Na-ADP | Sigma-Aldrich | A2754-1G | |
NaCl | Supelco | 1.06404.1000 | |
Nanodrop Spectrometer | Isogen Life Science | ND-1000 spectrophotometer NanoDrop | |
NaOH | Supelco | 1.06498.1000 | |
Needles for GUVs | Henke-Ject | 14-14575 | 27 G x 3/4'' 0.4 x 20 mm |
Needles for microfluidics | Henke-Ject | 14-15538 | 18 G x 1 1/2'' 1.2 x 40 mm |
Ni2+ Sepharose | Cytiva | 17526802 | |
Nigericin | Sigma-Aldrich | N7143-5MG | |
Nutator | VWR | 83007-210 | |
Osmolality meter | Gonotec Salmenkipp | Osmomat 3000 basic freezing point osmometer | |
Plasmacleaner | Plasma Etch | PE-Avenger | |
Polycarbonate filter | Cytiva Whatman | Nuclepor Track-Etch Membrane Product: 10417104 | 0.4 µm |
Polycarbonate ultracentrifuge tube | Beckman Coulter | 355647 | |
Pyranine | Acros Organics | H1529-1G | |
Quartz cuvette (black) | Hellma Analytics | 108B-10-40 | |
Sephadex G-75 resin | GE Healthcare | 17-0050-01 | |
Sonicator | Sonics Sonics & Materials INC | Sonics vibra cell | |
Syringe filter | Sarstedt | Filtropur S plus 0.2 | 0.2 µm |
Syringe pump | Harvard Apparatus | A-42467 | |
Tabletop centrifuge | Eppendorf | centrifuge 5418 | |
Teflon spacer | Homemade | Teflon based | 45 x 26 x 1.5 or 45 x 26 x 3 or 20 x 20 x 3 mm |
Tris | PanReac AppliChem | A1086.1000 | |
Triton X-100 | Sigma Aldrich | T8787-100 ml | |
Ultracentrifuge | Beckman Coulter | Optima Max-E | |
UV lamp | Spectroline | ENB-280C/FE | |
UV/VIS Spectrometer | Jasco | V730 spectrophotometer | |
Valinomycin | Sigma-Aldrich | V0627-10MG | |
Widefield fluorescence microscope | Zeiss | AxioObserver | |
β-Casein | Sigma Aldrich | C5890-500g |
Genehmigung beantragen, um den Text oder die Abbildungen dieses JoVE-Artikels zu verwenden
Genehmigung beantragenThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten