Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados Representativos
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

Presentamos un protocolo para la reconstitución de proteínas de membrana y encapsulación de enzimas y otros componentes solubles en agua en vesículas lipídicas de tamaño submicrométrico y micrométrico.

Resumen

Presentamos un método para incorporar a las vesículas redes complejas de proteínas, que involucran proteínas de membrana integrales, enzimas y sensores basados en fluorescencia, utilizando componentes purificados. Este método es relevante para el diseño y construcción de biorreactores y el estudio de redes complejas de reacciones metabólicas fuera de equilibrio. Comenzamos reconstituyendo (múltiples) proteínas de membrana en grandes vesículas unilaminares (LUVs) de acuerdo con un protocolo previamente desarrollado. A continuación, encapsulamos una mezcla de enzimas purificadas, metabolitos y sensores basados en fluorescencia (proteínas fluorescentes o colorantes) mediante congelación-descongelación-extrusión y eliminamos los componentes no incorporados mediante centrifugación y/o cromatografía de exclusión por tamaño. El rendimiento de las redes metabólicas se mide en tiempo real mediante el seguimiento de la relación ATP/ADP, la concentración de metabolitos, el pH interno u otros parámetros mediante la lectura de fluorescencia. Nuestras vesículas que contienen proteínas de membrana de 100-400 nm de diámetro se pueden convertir en vesículas unilaminares gigantes (GUV), utilizando procedimientos existentes pero optimizados. El enfoque permite la inclusión de componentes solubles (enzimas, metabolitos, sensores) en vesículas de tamaño micrométrico, aumentando así el volumen de los biorreactores en órdenes de magnitud. La red metabólica que contiene los GUV queda atrapada en dispositivos microfluídicos para su análisis mediante microscopía óptica.

Introducción

El campo de la biología sintética ascendente se centra en la construcción de células (mínimas) 1,2 y biorreactores metabólicos con fines biotecnológicos 3,4 o biomédicos 5,6,7,8. La construcción de células sintéticas proporciona una plataforma única que permite a los investigadores estudiar proteínas (de membrana) en condiciones bien definidas que imitan las de los entornos nativos, lo que permite el descubrimiento d....

Protocolo

1. Preparación general

  1. Productos químicos
    1. Disuelva los lípidos (en forma de polvo) a 25 mg/mL en CHCl3 para hacer liposomas preformados.
      NOTA: Es preferible preparar caldos lipídicos frescos, pero las soluciones madre también pueden almacenarse a -20 °C durante algunas semanas. Trabajar con lípidos en forma de polvo es más preciso que utilizar lípidos ya solubilizados en CHCl3. El CHCl3 debe manipularse con pipetas de vidrio y/o jeringas y almacenarse en recipientes de vidrio, ya que el CHCl3 disuelve los plásticos.
    2. Disuelva moléculas pequeñas (nucleótidos, aminoácidos, sondas ....

Resultados Representativos

La reconstitución de las proteínas de membrana solubilizadas en liposomas requiere la desestabilización de las vesículas preformadas. La adición de pequeñas cantidades de Triton X-100 inicialmente resulta en un aumento de la absorbancia a 540 nm (A540) debido a un aumento en la dispersión de la luz por la hinchazón de las vesículas (Figura 4). El valor máximo de A540 es el punto en el que los liposomas están saturados con detergente (Rsat).......

Discusión

Presentamos un protocolo para la síntesis de proteínas (de membrana) que contienen vesículas lipídicas de tamaño submicrométrico (proteoLUVs), y la conversión de proteoLUVs en vesículas unilamelares gigantes (proteoGUVs). El protocolo debería ser aplicable para la reconstitución de otras proteínas de membrana 13,19,30,40 y la encapsulación de redes metabólicas distintas de la descomposición de L-arginina y las vías de síntesis de glicerol 3-fosfato presentadas aquí.

Divulgaciones

Los autores declaran no tener ningún interés financiero contrapuesto.

Agradecimientos

Los autores agradecen a Aditya Iyer por la clonación del gen pBAD-PercevalHR y a Gea Schuurman-Wolters por ayudar con la producción y purificación de proteínas. La investigación fue financiada por el programa de Gravitación del Nuevo Orden Mundial "Construyendo una Célula Sintética" (BaSyC).

....

Materiales

NameCompanyCatalog NumberComments
AgaroseSigma AldrichA9414-25g
Amicon cut-off filterSigma AldrichMilipore centrifugal filter units Amicon Ultra 
BioBeadsBioRad152-3920
CHCl3Macron Fine ChemicalsMFCD00000826
D(+)-GlucoseFormedium-
D(+)-SucroseFormedium-
DDMGlyconD97002 -C
Diethyl EtherBiosolve52805
DMSOSigma-Aldrich276855-100ml
DOPCAvanti850375P-1g
DOPEAvanti850725P-1g
DOPGAvanti840475P-1g
DTTFormedium DTT005
EtOHJ.T.Baker AvantorMFCD00003568
ExtruderAvestin IncLF-1
FluorimeterJascoSpectrofluorometer FP-8300
GlycerolBOOM51171608
Gravity flow columnBio-Rad732-1010
Hamilton syringe 100 µLHamilton7656-01
Hamilton syringe 1000 µLHamilton81320
Handheld LCP dispenserArt Robbins Instruments620-411-00
Handheld SonicatorHielscher Ultrasound TechnologyUP50H
HClBOOMx76021889.1000
ImidazoleRothX998.4-250g
K2HPO4Supelco1.05099.1000
KClBOOM76028270.1
KH2PO4Supelco1.04873.1000
KimwipeKimtech Science7552
Large Falcon tube centrifugeEppendorfCentrifuge 5810 R
L-ArginineSigma-AldrichA5006-100G
Light microscopeLeicaDM LS2
L-OrnithineRothT204.1
LSM Laser Scanning Confocal MicroscopeZeissLSM 710 ConfoCor 3
MgCl2Sigma-AldrichM2670-1KG
Microfluidic chipHomemade PDMS basedDOI: https://doi.org/10.1039/C8LC01275J
Na-ADPSigma-AldrichA2754-1G
NaClSupelco1.06404.1000
Nanodrop SpectrometerIsogen Life ScienceND-1000 spectrophotometer NanoDrop
NaOHSupelco1.06498.1000
Needles for GUVsHenke-Ject14-1457527 G x 3/4'' 0.4 x 20 mm
Needles for microfluidicsHenke-Ject14-1553818 G x 1 1/2'' 1.2 x 40 mm
Ni2+ SepharoseCytiva17526802
NigericinSigma-AldrichN7143-5MG
NutatorVWR83007-210
Osmolality meterGonotec SalmenkippOsmomat 3000 basic freezing point osmometer
PlasmacleanerPlasma EtchPE-Avenger
Polycarbonate filterCytiva WhatmanNuclepor Track-Etch Membrane Product: 104171040.4 µm
Polycarbonate ultracentrifuge tubeBeckman Coulter355647
PyranineAcros OrganicsH1529-1G
Quartz cuvette (black)Hellma Analytics108B-10-40
Sephadex G-75 resin GE Healthcare17-0050-01
SonicatorSonics Sonics & Materials INCSonics vibra cell
Syringe filterSarstedtFiltropur S plus 0.20.2 µm
Syringe pumpHarvard ApparatusA-42467
Tabletop centrifugeEppendorfcentrifuge 5418
Teflon spacerHomemade Teflon based45 x 26 x 1.5 or 45 x 26 x 3 or 20 x 20 x 3 mm
TrisPanReac AppliChemA1086.1000
Triton X-100Sigma AldrichT8787-100 ml
UltracentrifugeBeckman CoulterOptima Max-E
UV lampSpectrolineENB-280C/FE
UV/VIS SpectrometerJascoV730 spectrophotometer
ValinomycinSigma-AldrichV0627-10MG
Widefield fluorescence microscopeZeissAxioObserver
β-CaseinSigma AldrichC5890-500g

Referencias

  1. Hirschi, S., Ward, T. R., Meier, W. P., Müller, D. J., Fotiadis, D. Synthetic biology: bottom-up assembly of molecular systems. Chem Rev. 122 (21), 16294-16328 (2022).
  2. Ivanov, I., et al. Bottom-up synthesis o....

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Redes Metab licas Fuera de EquilibrioReconstituci n de Prote nas de MembranaVes culas Unilamelares Grandes LUVsVes culas Unilamelares Gigantes GUVsBiorreactoresSensores Basados en FluorescenciaEncapsulaci n de EnzimasEncapsulaci n de Metabolitos

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados