A subscription to JoVE is required to view this content. Sign in or start your free trial.
In the current climate of scarce resources, new technologies are emerging that allow researchers to conduct studies cheaper, faster and with more precision. Here we describe the development of a bead-based salivary antibody multiplex immunoassay to measure human exposure to multiple environmental pathogens simultaneously.
The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. This manuscript describes the development and analysis of a bead-based multiplex immunoassay capable of measuring the presence of antibodies in human saliva to multiple pathogens simultaneously. Saliva is particularly attractive in this application because it is noninvasive, cheaper and easier to collect than serum. Antigens from environmental pathogens were coupled to carboxylated microspheres (beads) and used to measure antibodies in very small volumes of human saliva samples using a bead-based, solution-phase assay. Beads were coupled with antigens from Campylobacter jejuni, Helicobacter pylori, Toxoplasma gondii, noroviruses (G I.1 and G II.4) and hepatitis A virus. To ensure that the antigens were sufficiently coupled to the beads, coupling was confirmed using species-specific, animal-derived primary capture antibodies, followed by incubation with biotinylated anti-species secondary detection antibodies and streptavidin-R-phycoerythrin reporter (SAPE). As a control to measure non-specific binding, one bead set was treated identically to the others except it was not coupled to any antigen. The antigen-coupled and control beads were then incubated with prospectively-collected human saliva samples, measured on a high throughput analyzer based on the principles of flow cytometry, and the presence of antibodies to each antigen was measured in Median Fluorescence Intensity units (MFI). This multiplex immunoassay has a number of advantages, including more data with less sample; reduced costs and labor; and the ability to customize the assay to many targets of interest. Results indicate that the salivary multiplex immunoassay may be capable of identifying previous exposures and infections, which can be especially useful in surveillance studies involving large human populations.
Eighty-eight percent of diarrhea-related illness worldwide is associated with human exposure to contaminated water, unsafe food, and poor sanitation/hygiene, causing approximately 1.5 million deaths, the majority of whom are children1. This is a major cause of concern for public health officials and policy makers. In an effort to investigate exposures and illnesses associated with waterborne and other environmental pathogens, we developed a multiplex immunoassay to measure antibodies in human samples2-4. This method can be applied to epidemiological studies to determine human exposure to these pathogens and to better define immunoprevalence and incident infections.
Saliva holds considerable promise as an alternative to serum for human biomarker research. Among the advantages of using saliva are the non-invasiveness and ease of sample collection, low cost, and samples can easily be collected from children5-7. Serum and saliva samples have been studied extensively for antibodies against H. pylori2,3,8, Plasmodium falciparum9, Entamoeba histolytica10, Cryptosporidium parvum3,11, Streptococcus pneumonia12, hepatitis viruses A and C13-14, noroviruses2-4,15, T. gondii2-4, dengue virus16, human immunodeficiency virus (HIV)17, and Escherichia coli O157:H718.
A multiplex immunoassay allows for the analysis of multiple analytes simultaneously within a single sample volume and within a single cycle or run. Multiplexed antigens from C. jejuni, T. gondii, H. pylori, hepatitis A virus, and two noroviruses were used to measure human salivary IgG2-4 and IgA3,4 and plasma IgG2,3 antibody responses to these pathogens using a bead-based multiplexing immunoassay. When used in conjunction with epidemiological studies of exposure to microbes in water, soil and food, the type of assay described in this study may provide valuable information to enhance the understanding of infections caused by environmental pathogens. Moreover, salivary antibody data obtained from such studies can be used to improve risk assessment models19-22.
Approval was obtained from the Institutional Review Board (IRB # 08-1844, University of North Carolina, Chapel Hill, NC, USA) for the collection of stimulated crevicular saliva samples from beachgoers at Boquerón Beach, Puerto Rico, as part of the United States Environmental Protection Agency (USEPA) National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study23 to assess swimming associated exposures and illnesses. Study subjects provided informed consent and were instructed on the use of the saliva collection device by trained USEPA contractors. The saliva samples were shipped on ice and, upon receipt, they were centrifuged and stored at -80 °C as described4.
1. Bead Activation
2. Bead Coupling
3. Bead Count
4. Confirmation of Antigen Coupling
5. Salivary Multiplex Immunoassay
One unique bead set was used as a control to measure non-specific binding and sample to sample variability. These beads were treated identically to the antigen coupled beads with the exception that they were not incubated with any antigen in the coupling step. MFI values >500 obtained from the control beads incubated with all saliva samples were removed from further analyses due to suspected contamination from serum and the remaining responses were log distributed. The saliva can be c...
These results indicate that the multiplex immunoassay method is useful for discriminating between saliva samples that are immunopositive or immunonegative. To determine immunopositivity, a single cut-off point was developed by calculating the mean plus three standard deviations of the log transformed MFI responses of the control uncoupled beads tested with all of the saliva samples. The cut-off point afforded the ability to assess exposure and immunoprevalence to either a single or multiple pathogens. This discriminative...
The United States Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to Agency's administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
Clarissa Curioso was supported through an appointment to the Research Participation Program at the U.S. Environmental Protection Agency administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and U.S. EPA.
Name | Company | Catalog Number | Comments |
Equipment and Software | |||
Microcentrifuge | Thermo Electron Corporation | 75002446 | Used to centrifuge samples |
Vortex Mixer | VWR | G560 | Used to mix samples |
Sonicator (mini) | Fisher Scientific | 15-337-22 | Used to separate beads |
Pipettors P10, P20, P100, P1000, 8 ch. | Capp | Various | |
Hemacytometer (Bright Line) | Housser Scientific | 3200 | Used to count coupled beads |
Multiscreen Vacuum Manifold | Millipore | MSVMHTS00 | Used in washing steps to remove supernatant |
MicroShaker | VWR | 12620-926 | Used to agitate beads during incubations |
Tube rack (1.5mL and 0.5mL) (assorted) | VWR | 30128-346 | |
Weighing Scale | Mettler or other | Used to measure wash reagents for making buffers | |
Dynabead Sample Mixer | Invitrogen | 947-01 | Used during coupling incubation step |
MatLab (R2014b) | The MathWorks, Inc. | Used to analyze antibody response data | |
Microsoft Excel 2014 | Microsoft Corporation | Used to analyze antibody response data | |
Luminex Analyzer with xPonent 3.1 software | Luminex Corporation | LX200-XPON3.1 | Instrument and software used to run assay |
Antigens | |||
GI.1 Norwalk Virus : p-particle | Xi Jiang (CCHMC)* | NA | *Cincinnati Childrens' Hospital. Final conc. 5 µg. |
GII.4 Norovirus VA387 : p-particle | Xi Jiang (CCHMC)* | NA | *Cincinnati Childrens' Hospital. Final conc. 5 µg. |
Hepatitis A Virus : grade II concentrate from cell culture | Meridian Life Sciences | 8505 | Antigen coupled at 100 µg |
Helicobacter pylori : lysate | Meridian Life Sciences | R14101 | Antigen coupled at 25 µg |
Toxoplasma gondii : recombinant p30 (SAG1) | Meridian Life Sciences | R18426 | Antigen coupled at 25 µg |
Campylobacter jejuni : heat killed whole cells | KPL | 50-92-93 | Antigen coupled at 50 µg |
Primary Antibodies | |||
Guinea pig anti-Norovirus | (CCHMC)* | NA | Used for coupling confirmation |
Mouse anti-Hepatitis A IgG | Meridian Life Sciences | C65885M | Used for coupling confirmation |
Mouse anti-Hepatitis A IgG | Meridian Life Sciences | C65885M | Used for coupling confirmation |
BacTraceAffinity Purified Antibody to Helicobacter pylori | KPL | 01-93-94 | Used for coupling confirmation |
Goat pAb to Toxoplasma gondii | Abcam | Ab23507 | Used for coupling confirmation |
BacTrace Goat anti-Campylobacter species | KPL | 01-92-93 | Used for coupling confirmation |
Secondary Antibodies | |||
Biotin-SP-Conjugated AffiniPure Donkey anti-Goat IgG (H+L) | Jackson | 705-065-149 | Used for coupling confirmation |
Biotinylated Rabbit anti-Goat IgG (H+L) | KPL | 16-13-06 | Used for coupling confirmation |
Biotinylated Goat anti-Mouse IgG (H+L) | KPL | 16-18-06 | Used for coupling confirmation |
Affinity Purified Antibody Biotin Labeled Goat anti-Rabbit IgG(H+L) | KPL | 176-1506 | Used for coupling confirmation |
Affinity Purified Antibody Biotin Labeled Goat anti-Human IgG(ᵞ) | KPL | 16-10-02 | Used for Salivary Immunoassay |
Consumables | |||
1.5 mL copolymer microcentrifuge tubes | USA Scientific | 1415-2500 | Used as low binding microcentrifuge tubes |
10 µL pipette tip refills | BioVentures | 5030050C | |
200 µL pipette tip refills | BioVentures | 5030080C | |
1000 µL pipette tip refills | BioVentures | 5130140C | |
Aluminum foil | Various Vendors | Used keep beads in the dark during incubations | |
Deep Well plates | VWR | 40002-009 | Used for diluting saliva samples |
Multiscreen Filter Plates | Millipore | MABVN1250 | Used to run assays |
Oracol saliva collection system | Malvern Medical Developments Limited | Used for saliva collection | |
Reagents | |||
Carboxylated microspheres (beads) | Luminex Corporation | Dependent on bead set | Antigens are coupled to the microspheres |
EDC (1-ethyl-3-[3dimethylaminopropyl] carbodiimide hydrochloride) | Pierce | 77149 or 22980 | Used in bead activation |
Sulfo-NHS (N-hydroxysulfosuccinimide) | Pierce | 24510 | Used in bead activation |
Steptavidin-R-phycoerythrin (1mg/mL) | Molecular Probes | S-866 | Used as reporter |
MES (2-[N-Morpholino]ethanesulfonic acid) | Sigma | M-2933 | Used for coupling |
Tween-20 (Polyoxyethylenesorbitan monolaurate) | Sigma | P-9416 | Used in wash buffer to remove non-specific binding |
Protein Buffers | |||
PBS-TBN Blocking/ Storage Buffer (PBS, 0.1% BSA, 0.02% Tween-20, 0.05% Azide, pH 7.4)** | Filter Sterilize and store at 4°C | ||
PBS, pH 7.4 | Sigma | P-3813 | 138 mM NaCl, 2.7 mM KCl |
BSA | Sigma | A-7888 | 0.1% (w/v) |
Tween-20 | Sigma | P-9416 | 0.2% (v/v) |
Sodium Azide (0.05% azide)** | Sigma | S-8032 | **Caution: Sodium azide is acutely toxic. Avoid contact with skin and eyes. Wear appropriate PPE's. Dispose of according to applicable laws. |
MES/ Coupling Buffer (0.05 M MES, pH 5.0) | |||
MES (2-[N-Morpholino]ethanesulfonic acid) | Sigma | S-3139 | |
5 N NaOH | Fisher | SS256-500 | |
Assay Buffer (PBS, 1% BSA, pH 7.4) | Filter Sterilize and store at 4°C | ||
PBS, 1% BSA, pH 7.4 | Sigma | P-3688 | 138 mM NaCl, 2.7 mM KCl, 1% BSA |
Activation Buffer (0.1 M NaH2PO4, pH 6.2) | Filter Sterilize and store at 4°C | ||
NaH2PO4 (Sodium phosphate, monobasic anhydrous) | Sigma | S-3139 | 0.1M NaH2PO4 |
5 N NaOH | Fisher | SS256-500 | |
Wash Buffer (PBS, 0.05% Tween-20, pH 7.4) | Filter Sterilize and store at 4°C | ||
PBS, 0.05% Tween-20, pH 7.4 | Sigma | P-3563 | 138 mM NaCl, 2.7 mM KCl, 0.05% TWEEN |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved