Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol details the utilization of a polyol-based microwave-assisted extraction method for extracting phenolic compounds and natural antioxidants, representing a practical and environmentally sustainable approach to the development of ready-to-use extracts.

Abstract

The utilization of polyols as green solvents for extracting bioactive compounds from plant materials has gained attention due to their safety and inert behavior with plant bioactive chemicals. This study explores the sustainable extraction of phenolic compounds and natural antioxidants from coffee silverskin using the microwave-assisted extraction (MAE) method with polyol-based solvents: glycerin, propylene glycol (PG), butylene glycol (BG), methylpropanediol (MPD), isopentyldiol (IPD), pentylene glycol, 1,2-hexanediol, and hexylene glycol (HG). A comparative analysis was conducted on conventional and non-conventional solvent extractions, focusing on their impact on the bioactive compounds of MAE, encompassing parameters such as total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities like the 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay (DPPH), the 2,2′-azino-bis(-3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging assay (ABTS), and the ferric reducing antioxidant power assay (FRAP). The highest values were observed for TPC with aqueous-1,2-hexanediol extraction (52.0 ± 3.0 mg GAE/g sample), TFC with aqueous-1,2-hexanediol extraction (20.0 ± 1.7 mg QE/g sample), DPPH with aqueous-HG extraction (13.6 ± 0.3 mg TE/g sample), ABTS with aqueous-pentylene glycol extraction (8.2 ± 0.1 mg TE/g sample), and FRAP with aqueous-HG extraction (21.1 ± 1.3 mg Fe (II) E/g sample). This research aims to advance eco-friendly extraction technology through natural plant components, promoting sustainability by minimizing hazardous chemical use while reducing time and energy consumption, with potential applications in cosmetics.

Introduction

Nowadays, there is a global trend towards environmental awareness in the beauty industry, leading manufacturers to focus on green technology for extracting plant components using sustainable alternatives1. Typically, traditional solvents such as ethanol, methanol, and hexane are used to extract plant phenolic components and natural antioxidants2. Nevertheless, the presence of solvent residues within plant extracts poses a potential risk to human health, inducing skin and eye irritation3, particularly concerning their intended application in cosmetics. Consequently, it is challenging to eliminate s....

Protocol

The details of the reagents and the equipment used in this study are listed in the Table of Materials.

1. Experimental preparation

  1. Plant sample preparation
    1. Collect fresh coffee silverskin (Coffea arabica) and dry it at 60 °C in a tray dryer for 72 h11.
    2. Grind the dried coffee silverskin (CS) into a fine powder using a grinder and store it at room temperature for further analysis

Representative Results

Effect of polyols solvents and conventional solvents on total phenolic content, total flavonoid content, DPPH, FRAP, and ABTS antioxidant assays
Solvent polarity should be compatible with that of targeted active molecules to improve the extraction efficiency of bioactive substances from plants22. Experiments were conducted using various solvents (water, ethanol, glycerin, propylene glycol, butylene glycol, methylpropanediol, isopentyldiol, pentylene glycol, 1,2-hexanediol, a.......

Discussion

Various factors play a crucial role in the successful implementation of MAE, such as the phytochemical content of plant components, extraction duration, temperature, microwave power, solid-liquid ratio, and solvent concentration13. Plants typically exhibit varying profiles of phytochemicals; hence, the selection of natural plants rich in antioxidants and phenolic compounds is essential23. Furthermore, distinct bioactive constituents display a variety of polarities depending.......

Acknowledgements

This study was funded by Mae Fah Luang University. The authors would like to acknowledge the Tea and Coffee Institute of Mae Fah Luang University for facilitating the connection between the researchers and local farmers concerning the acquisition of coffee silverskin samples.

....

Materials

NameCompanyCatalog NumberComments
1,2-HexanediolChanjao Longevity Co., Ltd.
2,2 -Azino-bis 3 ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS)SigmaA1888
2,2-Diphenyl-1-picrylhydrazyl (DPPH)SigmaD9132
2,4,6-Tri(2-pyridyl)-s-triazine (TPTZ)Sigma93285
2-Digital balanceOhausPioneer
4-Digital balanceDenverSI-234
6-hydroxy-2,5,7,8 tetramethylchroman -2-carboxylic acid (Trolox)Sigma238813
96-well plateSPL Life Science
Absolute ethanolRCI Labscan64175
Acetic acidRCI Labscan64197
Aluminum chlorideLoba Chemie898
Automatic pipetteLabnetBiopett
Butylene glycolChanjao Longevity Co., Ltd.
Ethos X advanced microwave extractionMilestone Srl, Sorisole, Italy
Ferrous sulfateAjex Finechem3850
Folin-Ciocalteu's reagentLoba Chemie3870
Freezer SFSanyoC697(GYN)
Gallic acidSigma398225
GrinderOu Hardware Products Co.,Ltd
Hexylene glycolChanjao Longevity Co., Ltd.
Hydrochloric acid (37%)RCI LabscanAR1107
Iron (III) chlorideLoba Chemie3820
IsopentyldiolChanjao Longevity Co., Ltd.
MethanolRCI Labscan67561
Methylpropanediol Chanjao Longevity Co., Ltd.
Pentylene glycolChanjao Longevity Co., Ltd.
Potassium persulfateLoba Chemie5420
Propylene glycolChanjao Longevity Co., Ltd.
QuercetinSigmaQ4951
Refrigerated centrifugeHettich
Sodium acetateLoba Chemie5758
Sodium carbonateLoba Chemie5810
Sodium hydroxideRCI LabscanAR1325
Sodium nitriteLoba Chemie5954
SPECTROstar Nano microplate readerBMG- LABTECH
SPSS softwareIBM SPSS Statistics 20
Tray dryerFrance EtuvesXUE343

References

  1. Wawoczny, A., Gillner, D. The most potent natural pharmaceuticals, cosmetics, and food ingredients isolated from plants with deep eutectic solvents. J Agric Food Chem. 71 (29), 10877-10900 (2023).
  2. Syukur, M., Prahasiwi, M. S., Yuliani, S., Purwaningsih, Y., Indriyanti, E.

Explore More Articles

ChemistryGreen solventnon conventional extractiongreen extractionbioactive compounds

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados