Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes a method to obtain in vivo, high-density single-neuron recordings from the brainstem of head-fixed mice. This approach is deployed to measure the action potential firing of neurons in the ventrolateral periaqueductal gray - a brainstem region inactive during Rapid Eye Movement (REM) sleep - before and during general anesthesia.

Abstract

Silicon multielectrode-based recordings are increasingly popular for studying neuronal activity at the temporal resolution of action potentials in many brain regions. However, recording neuronal activity from deep caudal structures like the brainstem using multi-channel probes remains challenging. A significant concern is finding a trajectory for probe insertion that avoids large blood vessels, such as the superior sagittal venous sinus and the transverse venous sinus. Injuring these large veins can cause extensive bleeding, damage to the underlying brain tissue, and potentially death. This approach describes targeting brainstem structures by coupling anterior coordinates with an angled approach, allowing the recording probe to penetrate the brain below high-risk vascular structures. Compared to a strictly vertical approach, the angled approach maximizes the number of brain regions that can be targeted. Using this strategy, the ventrolateral periaqueductal gray (vlPAG), a brainstem region associated with REM sleep, can be reproducibly and reliably accessed to obtain single-unit, multi-electrode recordings in head-fixed mice before and during sevoflurane anesthesia. The ability to record neuronal activity in the vlPAG and surrounding nuclei with high temporal resolution is a step forward in advancing the understanding of the relationship between REM sleep and anesthesia.

Introduction

Silicon multielectrode-based recordings are becoming increasingly popular to measure neuronal activity across many brain regions with single action potential resolution1,2,3,4. Over the last decade, high-density recording technology has grown considerably. Current silicon-based recording electrodes can accommodate high channel counts, optical fibers, and electrocorticography (ECoG) recording devices5,6. Moreover, chronic implantation of these electrodes allows for long-term recording....

Protocol

All studies were approved by the Institutional Animal Care and Use Committee at the University of Virginia (Charlottesville, Virginia). Five male C57BL/6J mice, age 3-7 months, weighing 25-30 g, were used. The details of the reagents and the equipment used here are listed in the Table of Materials.

1. Headplate and headset implantation

  1. Make an ECoG headset by soldering perfluoroalkoxy (PFA) coated stainless steel wire to a 3-pin connector.......

Representative Results

Five male C57BL/6J were implanted with an ECoG headset and headplate (Figure 4A). After recovery, mice were habituated to head-fixation and the electrophysiology recording rig during two 1.5 h sessions on separate days (Figure 4B). Next, a 2 mm x2 mm craniotomy window was created (Figure 4C) and a silicon probe was inserted with the mouse awake and head-fixed (Figure 4D). Two types of silicon UCLA probe.......

Discussion

Brainstem nuclei mediate fundamental functions such as breathing, consciousness, and sleep26,27,28. The brainstem's location (deep and posterior) presents a challenge in studying its neuronal activity in vivo using standard techniques. Here an angled anterior approach is presented to allow reproducible single unit recording in head-fixed mice.

Careful insertion of the multi-electrode sili.......

Acknowledgements

Figure 1, Figure 3, Figure 4, Figure 8 and Figure 9 were created with BioRender.com. We would like to thank Scott Kilianski for the help with MATLAB code and sharing his scripts. We thank Anna Grace Carns for the help with probe trajectory reconstruction.

....

Materials

NameCompanyCatalog NumberComments
1024 channel RHD Recording ControllerIntan Technologies, Los Angeles, California, USAC3008Silicon probe recording; recording hardware and software
24 mm x 50 mm No. 1.5 VWR coverslipVWR, Radnor, Pennsylvania, USA48393-081Histology
4% PFA in PBSThermoFisher Scientific, Waltham, Massachusetts, USAJ61899.AKHistology; perfusion solution
C&B metabondPatterson Dental, Richmond, Virginia, USApowder: 5533559, quick base: 5533492, catalyst: 55335007Headplate &Headset Implantation
C57/6J mice 4-6 weeks, malesThe Jackson Laboratory, Bar Harbor, Maine, USA000664
Capnomac UltimaDatex, Helsinki, Finland ULT-SVi-27-07Gas Analyzer; discontinued; alternative gas analyzer can be purchased from Bionet America 
CM-DiIThermoFisher Scientific, Waltham, Massachusetts, USAV22888Red fluorescent dye for coating of the silicon probe
Connector HeaderDigiKey, Thief River Falls, Minnesota, USA1212-1788-NDECoG Headset
DAPI Fluoromount-GSouthernBiotech, Birmingham, Alabama, USA0100-20Histology
iBOND UniversalPatterson Dental, Richmond, Virginia, USA044-1113Headplate &Headset Implantation; for  securing stainless steel wires to the skull
Low toxicity silicon adhesiveWorld Precision Instruments, Sarasota, Florida, USAKWIK-SILHeadplate
Micro-Manipulator SystemNew Scale Technologies, Victor, New York, USAMulti-Probe Manipulator: XYZ Stage Assembly: 06464-0000, MPM System Kit: 06267-3-0001, MPM-Platform-360, MPM ring for MPM Manual Arms, MPM_Ring-72 DEG: 06262-3-0000Silicon probe recording; inserting the probe into the brain
MicroprobesUCLA, Los Angeles, California, USA256 ANS, 64MDiscontinued; alternative silicon probes can be purchased from Neuropixels
Mineral OilSigma Aldrich, Saint Luis, Missouri, USAM8410-100MLSilicon probe recording; preventing the tissue from drying during the recording
Normal salineThermoFisher Scientific, Waltham, Massachusetts, USAZ1376Headplate &Headset Implantation; preventing the brain from drying during the surgery
PFA-Coated Stainless Steel Wire-Diameter 0.008 in. coated with striped endsA-M systems, Sequim, Washington, USA791400ECoG Headset & reference electrode for ECoG 
Platinum wire 24AWG World Precision Instruments, Sarasota, Florida, USAPTP201Reference electrode for the silicon probe recording 
Shandon Colorfrost Plus microscope slidesThermoFisher Scientific, Waltham, Massachusetts, USA99-910-01Histology
Stainless steel HeadplateStar Rapid, Chinacustom made partHeadplate &Headset Implantation; design available upon request
Stereotaxic apparatusKOPF, Tujunga, California, USAModel 940 Small Animal Stereotaxic Instrument with Digital Display ConsoleHeadplate &Headset Implantation

References

Explore More Articles

Acute Single unit RecordingsMulti electrode RecordingsBrainstemHead fixed MiceNeuronal ActivityProbe Insertion TrajectoryVascular StructuresVentrolateral Periaqueductal Gray vlPAGREM SleepSevoflurane AnesthesiaTemporal ResolutionAngled ApproachBrain RegionsRecording Strategy

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados