A subscription to JoVE is required to view this content. Sign in or start your free trial.
Biplanar videoradiography (BVR) is an advanced imaging technique for understanding the three-dimensional movement of skeletal bones and implants. Combining density-based image volumes and videoradiographs of the distal upper extremity, BVR is used to study the in vivo motion of the wrist and distal radioulnar joint, as well as joint arthroplasties.
Accurate measurement of skeletal kinematics in vivo is essential for understanding normal joint function, the influence of pathology, disease progression, and the effects of treatments. Measurement systems that use skin surface markers to infer skeletal motion have provided important insight into normal and pathological kinematics, however, accurate arthrokinematics cannot be attained using these systems, especially during dynamic activities. In the past two decades, biplanar videoradiography (BVR) systems have enabled many researchers to directly study the skeletal kinematics of the joints during activities of daily living. To implement BVR systems for the distal upper extremity, videoradiographs of the distal radius and the hand are acquired from two calibrated X-ray sources while a subject performs a designated task. Three-dimensional (3D) rigid-body positions are computed from the videoradiographs via a best-fit registrations of 3D model projections ontoΒ to each BVR view. The 3D models are density-based image volumes of the specific bone derived from independently acquired computed-tomography data. Utilizing graphics processor units and high-performance computing systems, this model-based tracking approach is shown to be fast and accurate in evaluating the wrist and distal radioulnar joint biomechanics. In this study, we first summarized the previous studies that have established the submillimeter and subdegree agreement of BVR with an in vitroΒ optical motion capture system in evaluating the wrist and distal radioulnar joint kinematics. Furthermore, we used BVR to compute the center of rotation behavior of the wrist joint, to evaluate the articulation pattern of the components of the implant upon one another, and to assess the dynamic change of ulnar variance during pronosupination of the forearm. In the future, carpal bones may be captured in greater detail with the addition of flat panel X-ray detectors, more X-ray sources (i.e., multiplanar videoradiography), or advanced computer vision algorithms.
Accurate measurement of skeletal kinematics in vivo is essential for understanding healthy and replaced joint function, the influence of pathology, disease progression, and the effects of treatments. Quantifying skeletal kinematics noninvasively at the joint surface (arthrokinematics) is crucial to understand joint pathologies and diseases, such as osteoarthritis, but it is technically challenging. Previously, techniques that use skin surface markers to infer skeletal motion have provided important insight into healthy and pathological kinematics.Β However, accurate arthrokinematics cannot be attained using these techniques, especially during dynamic activities such as activities of daily living. These optical systems are inherently limited in accuracy because of the skin movement relative to the underlying bones, the main source of error in human movement analysis1,2.
The current state-of-the-art methods for quantifying three-dimensional (3D) skeletal kinematics are image-based tracking, namely, biplane videoradiography (BVR)3Β and serial computed-tomography (CT) volumes4Β and magnetic resonance imaging (MRI)5. Although regular 3D CT and MRI-based technologies are highly accurate and accessible in many hospitals across the world, they are incapable of measuring the dynamic motion of the joints. Imaging techniques such as 4D CT scanning6 and dynamic MRI7 have been developed in recent years to resolve this shortcoming; however, these methods either expose patients to a high radiation dosage or suffer from low temporal resolution.
Combining novel computer vision algorithms and traditional x-ray systems, BVR has been shown to be accurate for multiple joints in animals and humans; resolved either with marker-based or model-based tracking algorithms. Marker-based approaches track tantalum beads inserted into bones or soft-tissue and are optimal for animal and in vitroΒ testing. However, they are prohibitively invasive for in vivo human research. Fortunately, improvements in model-based tracking algorithms provide a viable alternative. Model-based BVR tracking approaches in humans involve preparing the volumetric image sets acquired by CT or MRI in a static posture and capturing theΒ motions of interests in the field-of-view of two X-rays. Most model-based tracking applications then generate digitally reconstructed radiographs (DRR) of the bone or implant from the static CT or MR images and match them to feature-enhanced videoradiographs using metrics that demonstrate the similarity between DRRs and videoradiographs8. This process is called "tracking" the bone or implant.
The primary output variables of tracking bones or implants are rigid body kinematics, from which joint kinematics, ligament elongations9,10, joint spacing as a surrogate for cartilage thickness11, joint contact12,13, and other biomarkers can be computed. Recently, we documented the accuracy of model-based tracking BVR in computing the biomechanics of the wrist, total wrist arthroplasty (TWA), and distal radioulnar joint (DRUJ)14,15. In the following section, a detailed protocol of this validated method for studying the motion of the skeletal wrist, total wrist arthroplasty, and the distal radioulnar joint during various tasks is presented. We segment the density-based image volumes of the bones and implants from the CT image volumes, track these partial image volumes within the videoradiographs, and determine outcomes such as center of rotation, contact pattern, and ulnar variance to demonstrate this method's strengths and limitations.
This study was approved by the Institutional Review Board (IRB) of Lifespan - Rhode Island Hospital, an AAHRPP accredited IRB. A total of 16 patients provided signed informed consent according to institutional guidelines.
1. Data acquisition
Figure 1. Experimental setup. Please click here to view a larger version of this figure.
Figure 2.Β A) Undistortion grid. B) Calibration cube and its reference items. Please click here to view a larger version of this figure.
2. Data Processing
Figure 3. Computed-tomography image of the wrist and reconstructed models of radius, third metacarpal, and ulna. Please click here to view a larger version of this figure.
Figure 4.Β A) Captured radiograph of an X-ray source with digitally reconstructed radiographs (DRRs) of the bones. B) Enhanced (filtered) radiograph and DRRs. C) Matched DRRs after optimization process. Please click here to view a larger version of this figure.
3. Data Analysis
Figure 5. Coordinate systems of the bones and implant's components. Please click here to view a larger version of this figure.
The selection of 2D-to-3D image registration software for model-based trackingΒ depends in part on access to graphics processor unit (GPU) and high-performance computing (HPC) systems. These programs have different pipelines, and as of now, there is no common methodology among the programs. In this study, we use Autoscoper, an open-source 2D-to-3D image registration program developed at Brown University25. The choice of open-source makes it possible for the investigators to modify and automate...
Biplanar videoradiography (BVR) is an image-based method that can be used to measure bone and implant motion in the wrist and distal radioulnar joint with submillimeter and subdegree accuracy. In the studies we described here, BVR was used to identify an accurate pattern of projected COR for a healthy wrist as well as TWA contact patterns. Such findings may inform the design of next generation total wrist replacements and can provide in vivo data for validation of computational of models. Using BVR, the nonlinea...
We have no conflict of interest to declare.
The authors want to thank Josephine Kalshoven, and Lauren Parola for revising the protocol. The authors also want to thank Erika Tavares and Rohit Badida for their help throughout the data acquisition, and Kalpit Shah, Arnold-Peter Weiss, and Scott Wolfe for their help in data interpretation. This study was possible with support from the National Institutes of Health P30GM122732 (COBRE Bio-engineering Core) and a grant from the American Foundation for Surgery of the Hand (AFSH).
Name | Company | Catalog Number | Comments |
3D Surface Scanner | Artec 3D | Artec Space SpiderTM | Luxembourg |
Autoscoper | Brown University | https://simtk.org/projects/autoscoper | https://doi.org/10.1016/j.jbiomech.2019.05.040 |
CT Scanner | General Electric (GE) | Lightspeed 16 | Milwaukee, WI, USA |
Geomagic Wrap 3D | 3DSystems | Version 2017 | Rock Hill, SC, USA |
Graphics Processing Unit (GPU) | Nvidia | GeForce GTX 1080 | CUDA-enabled GPU |
High-speed Video Cameras | Phantom | Version 10 | Vision Research, Wayne, NJ, USA |
Image Intensifier | Dunlee | 40 cm diameter | Aurora, IL, USA |
ImageJ | Open-source (Brown University) | https://imagej.net/Fiji | https://doi.org/10.1038/nmeth.2019 |
Matlab | The MathWorks, Inc. | R2017a to R2020a | Natick, MA, USA |
Mimics | Materialise | Version 19.0 to 22.0 | Leuven, Belgium |
Motion Capture Cameras | Qualisys | Oqus 5+Β | Gothenburg, Sweden |
Pulsed X-ray Generators | EMD Technologies | EPS 45β80 | Saint-Eustache, Quebec, QC, Canada |
Undistortion Grid | McMaster-Carr | 9255T641 | Steel Perforated Sheet Staggered Holes, 0.048" Thk, 0.125" Hole Dia, 36" X 40" |
Wrist Implant (In-vitro Study) | Integra LifeSciences | Universal 2 | Plainsboro, NJ, USA |
Wrist Implant (In-vivo Study) | Integra LifeSciences | Freedom | Plainsboro, NJ, USA |
WristViz | Open-source (Brown University) | https://github.com/DavidLaidlaw/WristVisualizer/tree/master | Open-source software |
X-ray Tubes | Varian Medical Systems | Model G-1086 | Palo Alto, CA, USA |
XMALab | Open-source (Brown University) | https://www.xromm.org/xmalab/ | https://doi.org/10.1242/jeb.145383 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright Β© 2025 MyJoVE Corporation. All rights reserved