A subscription to JoVE is required to view this content. Sign in or start your free trial.
The goal of this protocol is to evaluate changes in metabolic activity and refractive function of the lens in response to experimental treatment.
As the leading cause of blindness, cataracts are a significant burden for the tens of millions of people affected globally by this condition. Chemical exposures, among other environmental factors, are an established cause of cataracts. Ocular toxicity testing can assess whether pharmaceuticals and their components may contribute to lens damage that may lead to cataracts or aid the treatment of cataracts.
In vitro studies and in vivo animal testing can be used for assessing the safety of chemicals prior to clinical studies. The Draize test-the current in vivo standard for ocular toxicity and irritancy testing-has been criticized for lack of sensitivity and objective measurements of determining ocular toxicity. In vitro cell-based assays are limited as cell cultures cannot appropriately model an intact functional lens.
The method described here is a sensitive in vitro alternative to animal testing, designed to evaluate the response of the intact bovine lens to treatment at both the cellular activity level and for overall refractive performance. The non-toxic reagent resazurin is metabolized in proportion to the level of cell activity. The lens laser-scanner assay measures the ability of the lens to refract incident beams of light to a single point with minimal error, directly relevant to its natural function. The method may be used to determine both acute and delayed changes in the lens, as well as the recovery of the lens from chemical or environmental exposures.
Affecting over 20 million people, cataracts are the most prevalent cause of blindness worldwide1,2. Cataracts are most commonly due to age-related changes in the lens but are also induced from trauma, genetic conditions, disease, or toxic exposures2. Currently, treatment involves surgical intervention to replace the lens, an expensive and invasive procedure accessible mainly to those in developed countries. The extensive burden of cataract has directed decades of research towards cataract prevention and the development of non-surgical treatment. In both cases, the importance of preclini....
All experimental protocols were carried out in compliance with the University of Waterloo ethics policies for research using animal tissue. The bovine eyes for the current study were abattoir-provided, obtained from non-dairy cows within a few hours of death, and were dissected immediately, a process that takes up to 8 h from obtaining the eyes. Eyes should be dissected immediately to preserve sterility and dissection quality. The culture medium is prepared to a pH of 7.4 and sterile-filtered prior to supplementation wit.......
Figure 2 and Figure 3 (n = 6) demonstrate the results of a study testing the effect of chemical treatment (lanosterol) on the bovine lens. Lanosterol is a naturally occurring sterol in the lens that once showed promising results as a potential pharmaceutical intervention for cataracts25, although this has yet to be proven26. The study design included a medium and vehicle control for the compound. There was no signi.......
The purpose of this protocol is to directly evaluate the effects of chemicals or environmental exposures on the lens in primary tissue culture. First, lenses are dissected and scanned for optical quality. Prevention of contamination and ensuring dissection quality are critical. Lenses are scanned at periodic intervals to continuously monitor changes in refractive function with respect to the control group or preexposure condition. The metabolic activity assay represents an endpoint to determine whether the exposures have.......
Thanks to the Natural Sciences and Engineering Research Council (NSERC) and the Canadian Optometric Education Trust Fund (COETF) for the funds for this project.
....Name | Company | Catalog Number | Comments |
(2-Hydroxypropyl)-β-cyclodextrin | Sigma-Aldrich | H107 | Powder |
1 L bottle-top filtration system | VWR | 97066-204 | Full Assembly, bottle-top, 0.2 μm |
100 mm Petri dish | VWR | 89022-320 | Slippable, media saver style, sterile |
12 well-plate | Corning | 353043 | Sterile, clear-bottom |
35 mm petri dish | VWR | 25373-041 | Falcon disposable petri dishes, sterile, Corning |
96 well-plate | VWR | 29442-072 | Sterile, clear-bottom |
Alamar blue (resazurin) | Fischer Scientific | DAL1100 | Molecular Probes cell viability reagent |
Benzalkonium chloride solution | Sigma-Aldrich | 63249 | 50% in H20 |
Biosafety cabinet | |||
Cytation 5 plate reader | BioTek | CYT5MPV | Cell imaging multi-mode reader |
Fetal bovine serum | ThermoFischer Scientific | 12484028 | Qualified, heat inactivated, Canada |
HEPES | Sigma-Aldrich | H3375 | For cell culture, powder |
Incubator | |||
Lanosterol | Sigma-Aldrich | L5768 | ≥93%, powder |
L-glutamine | Sigma-Aldrich | For cell culture, powder | |
Medium (M-199) | Sigma-Aldrich | M3769 | Modified, with Earle′s salts, without L-glutamine, sodium bicarbonate, and phenol red, powder, suitable for cell culture |
Pasteur pipettes | 5 3/4'', with and without cotton | ||
Penicillin-Streptomycin | ThermoFischer Scientific | 15140122 | Liquid (10,000 U/mL) |
Phospate buffer saline (PBS) | liquid, sterile, suitable for cell culture | ||
Pipette tips (100 µL, 1,000 µL, 5,000 µL) | VWR | Sterile | |
ScanTox (lens laser-scanner) | Specially developed in-house | N/A | Scans lens with a laser to determine lens optical quality |
ScanTox culture chamber | Specially developed in-house | N/A | Holds bovine lens in place during testing and culturing |
Sodium bicarbonate | Sigma-Aldrich | S5761 | For cell culture, powder |
Sodium hydroxide | Sigma-Aldrich | S2770 | 1.0 N, BioReagent, suitable for cell culture |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved