Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
We present a protocol to synthesize Janus microhydrogels composed entirely of the same base material, poly(N-isopropylacrylamide) (PNIPAAm), with a clearly compartmentalized structure base on the phase separation of a supersaturated NIPAAm monomer solution. The synthesized Janus microhydrogels show unique properties such as anisotropic thermo-responsiveness and organophilic/hydrophilic loading capability.
Janus microparticles are compartmentalized particles with differing molecular structures and/or functionality on each of their two sides. Because of this unique property, Janus microparticles have been recognized as a new class of materials, thereby attracting a great deal of attention from various research fields. The versatility of these microparticles has been exemplified through their uses as building blocks for self-assembly, electrically responsive actuators, emulsifiers for painting and cosmetics, and carriers for drug delivery. This study introduces a detailed protocol that explicitly describes a synthetic method for designing novel Janus microhydrogels composed of a single base material, poly(N-isopropylacrylamide) (PNIPAAm). Janus microdroplets are firstly generated via a hydrodynamic focusing microfluidic device (HFMD) based on the separation of a supersaturated aqueous NIPAAm monomer solution and subsequently polymerized through exposure to UV irradiation. The resulting Janus microhydrogels were found to be entirely composed of the same base material, featured an easily identifiable compartmentalized morphology, and exhibited anisotropic thermo-responsiveness and organophilic/hydrophilic loading capability. We believe that the proposed method introduces a novel hydrogel platform with the potential for advanced synthesis of multi-functional Janus microhydrogels.
Hydrogels are a network of hydrophilic polymer chains.1 An increasing amount of research in the field of hydrogels has promoted significant advances and revealed their similarity to biological tissues; the properties of hydrogels allow the uptake of large amounts of water while maintaining their structure. Environmentally responsive hydrogels have also been studied extensively because of their ability to swell or shrink reversibly in response to external stimuli.2 Several triggers, including temperature,3-5 pH,6,7 light,8,9 electric fields,10,11 and specific molecules, such as glucose,12,13 have been suggested to control the geometric shape of hydrogels. Among the many environmentally responsive hydrogels currently available, poly(N-isopropylacrylamide) (PNIPAAm), a well-known thermo-responsive hydrogel, exhibits volume shrinkage above a low critical solution temperature (LCST) of 32 °C.14 A recent study by Sasaki et al.15 reported the intriguing liquid-liquid phase separation of supersaturated NIPAAm, which is the monomer of PNIPAAm. According to this report, supersaturated NIPAAm was dissolved with a 10-fold molar excess of H2O, and soon after, the solution separated into two liquid phases when allows to stand at a temperature above 25 °C; by contrast, dilute NIPAAm was dissolved homogeneously under the same conditions.
Microparticles made of environmentally responsive hydrogels are fascinating candidates for application in drug delivery,16,17 catalysis,18 sensing,19,20 and photonics.21 Traditional synthetic methods including emulsion polymerization, are used to produce hydrogel microparticles with polydispersity.22,23 However, certain applications require microparticles with a narrow size distribution, for example, to stabilize the pharmacokinetics of drug delivery.24 Irregularly shaped or polydisperse embolic microparticles aggregate proximally into clusters, leading to chronic inflammatory responses in embolic particles for cancer therapeutic treatment.25,26
The microfluidic approach is at the forefront of research as a means of fabricating micro-sized particles with narrow size distributions and complex shapes.27-31 The advantages of fabricating microparticles in the microfluidic device are predicated by the small characteristic length of the microfluidic device, which results in a low Reynolds number. In contrast to traditional bulk emulsification where drops are formed in parallel, microdroplets produced in microfluidic devices are generated in series and subsequently polymerized into microparticles upon exposure to UV irradiation. The fundamental principle of droplet formation using a microfluidic device is balance between the interfacial tension and the shear force of the sheath fluid acting on the core fluid.
Despite the obvious advantages of microfluidic fabrication of droplets/particles, Janus droplets/particles consisting of the same base material are rarely reported because the internal morphology of these droplets/particles is generally disturbed by the diffusion and perturbation of the core fluids. To circumvent this intrinsic limitation, two groups recently reported the preparation of the Janus microparticles by employing heat-induced phase separation of colloidal nanoparticles and UV-directed phase separation.32,33
To this end, we report a microfluidic approach to synthesize Janus microhydrogels entirely composed of a single base material and obtain a product with clearly compartmentalized morphology. Our approach is based on the primary concept of liquid-liquid phase separation of supersaturated NIPAAm monomer. The resulting Janus microhydrogels were found to possess unique properties including anisotropic thermo-responsiveness and organophilic/hydrophilic loading capability.
1. Fabrication d'un moule maître pour la focalisation hydrodynamique dispositif microfluidique (MMPB) par photolithographie
2. Fabrication de la MMPB par PDMS Castings
Figure 1: Vue d' ensemble de la procédure MMPB de fabrication (a) Paramètres de conception du photomasque pour la MMPB.. (B) Illustration de la procédure de fabrication pour la MMPB.ftp_upload / 52813 / 52813fig1large.jpg "target =" _ blank "> S'il vous plaît cliquer ici pour voir une version plus grande de cette figure.
3. Préparation de NIPAAm riche (N-riche), et NIPAAm pauvres (N-pauvres) Phases de séparation de phase de sursaturée NIPAAm
Figure 2:. Préparation du matériel pour Janus Microhydrogel Synthèse (a) Préparation de solutions de monomères N-riches et N-pauvres à travers la séparation de phase de sursaturée NIPAAm. (B) Les détails des matériaux et dispositif expérimental utilisé dans le protocole. S'il vous plaît cliquer ici pour voir une version plus grande de cette figure.
4. Synthèse de Janus Microhydrogels Utilisation de la MMPB
5. Analyse de l'Anisotropic Thermo-réactivité de Janus Microhydrogels
La figure 3a présente un schéma du dispositif expérimental utilisé pour synthétiser microhydrogels Janus via le MMPB. Les phases riches en azote et la N-pauvres étaient précisément injectés dans la MMPB comme fluides de base 1 et 2, puis fusionnés et divisés en microgouttelettes Janus à l'orifice par le fluide d'enveloppement d'une huile minérale en raison de l'instabilité capillaire de Rayleigh. Par conséquent, microgouttelettes J...
Deux matériaux de base non miscibles sont généralement utilisés pour synthétiser les microhydrogels Janus. Jusqu'à récemment, microhydrogels Janus composé de la même matière de base ont été rarement signalés et les microhydrogels rapportés Janus n'a pas eu une morphologie interne claire en raison de la perturbation causée par la miscibilité des matériaux constitutifs. 35, 36 Dans ce protocole, nous démontrons une méthode pour synthétiser microhydrogels Janus composées entièrement...
The authors declare that they have no competing financial interests.
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP (Nos. 2014R1A2A1A01006527 and 2011-0030075).
Name | Company | Catalog Number | Comments |
Silicon wafer | LG Siltron | 4", Test grade | Wafer for master mold fabrication |
Acetone | Samchun Pure Chemical | A0097 | Cleaning silicon wafer |
Isopropyl alcohol (IPA) | Daejung Chemicals & Metals | 5035-4404 | Cleaning silicon wafer |
Water purification system | Merck Millipore | EMD Millipore RIOs Essential 5 | Prepering deionized water |
O2 plasma machine | Femto Science | VITA-A | Cleaning silicon wafer |
SU-8 2150 negative photoresist | MicroChem | Y111077 0500L1GL | Photoresist for master mold fabrication |
Hot plate | Misung Scientific | HP330D, HP150D | Baking SU-8 |
SU-8 developer | Microchem | Y020100 4000L1PE | Developing SU-8 |
Mask aligner system for photolithograpy | Shinu Mst Co. | CA-6M | Photolithography |
Sylgard 184 silicone elastomer kit | Dow Corning | 1064891 | PDMS casting |
Laboratory Corona Treater | Electro-technic Products Inc. | Model BD-20AC | PDMS air plasma treatment |
N-isopropylacrylamide (NIPAAm) | Sigma-Aldrich | 415324-50G | Monomer |
N,N'-methylenebisacrylamide (MBAAm) | Sigma-Aldrich | 146072-100G | Crosslinker of NIPAAm |
4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone, Irgacure 2959 | BASF | 55047962 | Photoinitiator of NIPAAm |
ABIL EM 90 | Evonik Industries | 201109 | Sufactant for oil |
Vortex mixer | Scientific Industries Inc. | Vortex-Genie 2 | Mixing |
Tygon tubing | Saint-Gobain | I.D. 1/32", O.D. 3/32", Wall 1/32" | Connecting tube between syringes and HFMD |
UV light source | Hamamatsu | Spot light source LC8 | Polymerization from NIPAAm to PNIPAAm |
Syringes, NORM-JECT (3ml) | Henke-Sass Wolf GmbH | 22767 | Loading of materials |
Syringe pump | KD Scientific | KDS model 200 | Perfusion of materials |
Tegitol Type NP-10 | Sigma-Aldrich | NP10-500ML | Surfactant for water |
Oil red O | Sigma-Aldrich | O0625-25G | Dye for N-rich phase |
Oil Blue N | Sigma-Aldrich | 391557-5G | Dye for N-rich phase |
Yellow food dye | Edentown F&B | NA | Dye for N-poor phase |
Green food dye | Edentown F&B | NA | Dye for N-poor phase |
Power supply | Agilent | E3649A | Power soruce for thermoelectric moduel |
Thermoelectric module | Peltier | FALC1-12710T125 | Temparature control |
Centrifuge machine | Labogene | 1248R | Settling down microhydrogels |
24-well plate | SPL Life Sciences | 32024 | Reservoir for observation |
Optical microscope | Nikon | ECLIPSE 80i | Optical observation |
Image analysis software | IMT i-Solution Inc. | iSolutions DT | Measurement of radius |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon