Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.

Dans cet article

  • Résumé
  • Résumé
  • Introduction
  • Protocole
  • Résultats
  • Discussion
  • Déclarations de divulgation
  • Remerciements
  • matériels
  • Références
  • Réimpressions et Autorisations

Résumé

Présenté est un outil de calcul qui permet une mesure automatique simple et directe des orientations des branches dendritiques neuronales à partir d’images de fluorescence 2D.

Résumé

La structure des arbres dendritiques neuronaux joue un rôle clé dans l’intégration des entrées synaptiques dans les neurones. Par conséquent, la caractérisation de la morphologie des dendrites est essentielle pour une meilleure compréhension de la fonction neuronale. Cependant, la complexité des arbres dendritiques, à la fois lorsqu’ils sont isolés et surtout lorsqu’ils sont situés dans des réseaux neuronaux, n’a pas été complètement comprise. Nous avons développé un nouvel outil de calcul, SOA (Segmentation and Orientation Analysis), qui permet de mesurer automatiquement l’orientation des branches dendritiques à partir d’images de fluorescence de cultures neuronales 2D. SOA, écrit en Python, utilise la segmentation pour distinguer les branches dendritiques de l’arrière-plan de l’image et accumule une base de données sur la direction spatiale de chaque branche. La base de données est ensuite utilisée pour calculer des paramètres morphologiques tels que la distribution directionnelle des branches dendritiques dans un réseau et la prévalence de la croissance des branches dendritiques parallèles. Les données obtenues peuvent être utilisées pour détecter des changements structurels dans les dendrites en réponse à l’activité neuronale et aux stimuli biologiques et pharmacologiques.

Introduction

La morphogenèse dendritique est un sujet central en neurosciences, car la structure de l’arbre dendritique affecte les propriétés computationnelles de l’intégration synaptique dans les neurones1,2,3. De plus, des anomalies morphologiques et des modifications dans les branches dendritiques sont impliquées dans les troubles dégénératifs et neuro-développementaux4,5,6. Dans les cultures neuronales où la ramification dendritique peut être plus facilement visualisée, les interactions entr....

Protocole

NOTE: Le ministère israélien de la Santé a approuvé l’utilisation de souris en vertu du protocole IL-218-01-21 pour l’utilisation éthique des animaux de laboratoire. SOA n’est compatible qu’avec Windows 10 et Python 3.9. Il est disponible en tant que code open-source : https://github.com/inbar2748/DendriteProject. Sur ce lien, il y a aussi un fichier README. DM contient des instructions pour télécharger le logiciel, un lien vers le site Web du logiciel et un fichier de configuration requise contenant des informations sur les versions requises de tous les packages. D’autres exemples d’analyses effectuées à l’aide du logiciel y ont également été fournis.

Résultats

Une analyse représentative a été réalisée sur des images de réseaux dendritiques en culture. Les cellules ont été extraites comme décrit par Baranes et al. 16,17. En bref, les cellules de l’hippocampe ont été extraites du cerveau de rats postnatals et cultivées sur des couvertures en verre 2D pendant 1 à 2 semaines. Les cultures ont ensuite été fixées et colorées par immunofluorescence indirecte à l’aide d’un anticorps contre le m.......

Discussion

Des stratégies efficaces pour extraire des informations morphologiques à partir d’images 2D sont nécessaires de toute urgence pour suivre le rythme des données d’imagerie biologique. Bien que les données d’imagerie puissent être générées en quelques heures, l’analyse approfondie des images prend beaucoup de temps. En conséquence, le traitement de l’image est clairement devenu un obstacle majeur dans de nombreux domaines. Cela est dû en partie à la grande complexité des données, en particulier lors.......

Déclarations de divulgation

Les auteurs déclarent qu’ils n’ont pas d’intérêts financiers concurrents.

Remerciements

Les auteurs tiennent à remercier le Dr Orly Weiss pour la préparation des images de culture.

....

matériels

NameCompanyCatalog NumberComments
Matplotlib 2002 - 2012 John Hunter, Darren Dale, Eric Firing, Michael Droettboom and the Matplotlib development team; 2012 - 2021 The Matplotlib development team.3.4.2a Python 2D plotting library
matplotlib-scalebarPhilippe Pinard0.7.2artist for matplotlib to display a scale bar
NumPyThe NumPy community.1.20.3fundamental package for scientific computing library
OpenCVOpenCV team4.5.2.54Open Source Computer Vision Library
PyCharmJetBrains2020.3.1 (Community Edition) versionBuild #PC-203.6682.86, built on December 18, 2020. Runtime version: 11.0.9.1+11-b1145.37 amd64. VM: OpenJDK 64-Bit Server VM by JetBrains s.r.o. Windows 10 10.0. Memory: 978M, Cores: 4
PyQt5Riverbank Computing5.15.4manage the GUI
pythonPython Software Foundation License3.9 version
Qt DesignerThe QT Company Ltd.5.11.1 version
scipyCommunity library project1.6.3Python-based ecosystem of open-source software for mathematics, science, and engineering
SeabornMichael Waskom.0.11.1Python's Statistical Data Visualization Library.
Windows 10Microsoft
XlsxwriterJohn McNamara1.4.3Python module for creating Excel XLSX files

Références

  1. Ferrante, M., Migliore, M., Ascoli, G. Functional impact of dendritic branch-point morphology. Journal of Neuroscience. 33 (5), 2156-2165 (2013).
  2. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration.

Réimpressions et Autorisations

Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE

Demande d’autorisation

Explorer plus d’articles

Neurosciencesnum ro 175

This article has been published

Video Coming Soon

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.