Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.

Dans cet article

  • Résumé
  • Résumé
  • Introduction
  • Protocole
  • Résultats
  • Discussion
  • Déclarations de divulgation
  • Remerciements
  • matériels
  • Références
  • Réimpressions et Autorisations

Résumé

Ici, nous décrivons la production à grande échelle de sphéroïdes stromaux / cellules souches (ASC) dérivés des adipeux à l’aide d’un système de pipetage automatisé pour ensemencer la suspension cellulaire, assurant ainsi l’homogénéité de la taille et de la forme des sphéroïdes. Ces sphéroïdes ASC peuvent être utilisés comme blocs de construction pour les approches de bio-impression 3D.

Résumé

Les cellules stromales/souches (ASC) dérivées des adiposes sont une sous-population de cellules présentes dans la fraction vasculaire stromale du tissu adipeux sous-cutané humain reconnu comme une source classique de cellules stromales/souches mésenchymateuses. De nombreuses études ont été publiées avec des ASC pour des approches d’ingénierie tissulaire basées sur des échafaudages, qui ont principalement exploré le comportement de ces cellules après leur ensemencement sur des échafaudages bioactifs. Cependant, des approches sans échafaudage émergent pour concevoir des tissus in vitro et in vivo, principalement en utilisant des sphéroïdes, afin de surmonter les limites des approches basées sur des échafaudages.

Les sphéroïdes sont des microtissus 3D formés par le processus d’auto-assemblage. Ils peuvent mieux imiter l’architecture et le microenvironnement des tissus natifs, principalement en raison du grossissement des interactions de cellule à cellule et de matrice de cellule à extracellulaire. Récemment, les sphéroïdes sont principalement explorés en tant que modèles de maladies, études de dépistage de médicaments et éléments constitutifs de la bioimpression 3D. Cependant, pour les approches de bio-impression 3D, de nombreux sphéroïdes, de taille et de forme homogènes, sont nécessaires pour biofabriquer des modèles complexes de tissus et d’organes. De plus, lorsque les sphéroïdes sont produits automatiquement, il y a peu de risques de contamination microbiologique, ce qui augmente la reproductibilité de la méthode.

La production à grande échelle de sphéroïdes est considérée comme la première étape obligatoire pour le développement d’une ligne de biofabrication, qui se poursuit dans le processus de bioimpression 3D et se termine par la maturation complète de la construction tissulaire dans les bioréacteurs. Cependant, le nombre d’études qui ont exploré la production de sphéroïdes ASC à grande échelle est encore rare, ainsi que le nombre d’études qui ont utilisé des sphéroïdes ASC comme éléments constitutifs de la bioimpression 3D. Par conséquent, cet article vise à montrer la production à grande échelle de sphéroïdes ASC à l’aide d’une technique d’hydrogel micromoulé non adhésif répandant des sphéroïdes ASC comme éléments constitutifs pour les approches de bioimpression 3D.

Introduction

Les sphéroïdes sont considérés comme une approche sans échafaudage dans l’ingénierie tissulaire. Les ASC sont capables de former des sphéroïdes par le processus d’auto-assemblage. La microarchitecture 3D du sphéroïde augmente le potentiel de régénération des ASC, y compris la capacité de différenciation en plusieurs lignées 1,2,3. Ce groupe de recherche a travaillé avec des sphéroïdes ASC pour l’ingénierie du cartilage et des tissus osseux 4,5,6. Plus important encore, les sphéroïdes....

Protocole

Les ASC utilisés dans cette étude ont déjà été isolés à partir de donneurs humains en bonne santé et cryoconservés comme décrit14 selon le Comité d’éthique de la recherche de l’hôpital universitaire Clementino Fraga Filho, Université fédérale de Rio de Janeiro, Brésil (25818719.4.0000.5257). Voir le tableau des matériaux pour plus de détails concernant tous les matériaux et équipements utilisés dans cette étude.

1. Trypsinisation de la monocouche ASC au passage trois

  1. Ouvrir la culture tissulaire 175 cm2 flacon contenant la monocouche d’ASC à 80% de confluence et ....

Résultats

Le système de pipette automatique peut ensemencer la suspension de la cellule ASC dans 12 puits d’une plaque de 12 puits en 15 min. L’utilisation des 81 hydrogels micromoulés non adhérents produira 972 sphéroïdes à la fin du protocole. L’utilisation des 256 hydrogels micromoulés non adhérents produira 3 072 sphéroïdes à la fin du protocole. Les sphéroïdes ASC ont été analysés pour l’homogénéité de leur taille et de leur forme. Les sphéroïdes ASC des micromoules avec 81 récessions ont montré.......

Discussion

Cet article présente la génération à grande échelle de sphéroïdes ASC à l’aide d’un système de pipette automatisé. L’étape critique du protocole consiste à configurer avec précision le logiciel pour assurer le volume correct de suspension de cellule, la vitesse et la distance pour le pipetage. Les paramètres décrits dans le protocole ont été déterminés après un certain nombre d’essais afin d’optimiser la distribution de la suspension de cellules ASC dans les puits de plaques de 12 puits cont.......

Déclarations de divulgation

Les auteurs ne déclarent aucun conflit d’intérêts.

Remerciements

Nous remercions l’Institut national de métrologie, de qualité et de technologie (INMETRO, RJ, Brésil) pour l’utilisation de ses installations. Cette étude a été partiellement soutenue par la Fondation Carlos Chagas Filho pour le soutien à la recherche de l’État de Rio de Janeiro (Faperj) (code financier: E26/202.682/2018 et E-26/010.001771/2019), le Conseil national pour le développement scientifique et technologique (CNPq) (code financier: 307460/2019-3) et l’Office de la recherche navale (ONR) (code financier: N62909-21-1-2091). Ce travail a été partiellement soutenu par le National Center of Science and Technology on Regenerative Medicine-INCT Regenera (http://www.....

matériels

NameCompanyCatalog NumberComments
12-well plastic plateCorning3512
50 mL centrifuge tubeCorningCLS430828
EpMotion 5070Eppendorf5070000282
epT.I.P.S. MotionEppendorf30015231
ethylenediaminetetraacetic acid (EDTA)Invitrogen15576028
fetal bovine serum (FBS)Gibco10082147
Low Glucose Dulbecco's Modified Eagle Medium (DMEM LOW)Gibco31600034
MicroTissues 3D Petri Dish micro-mold spheroids - 16 x 16 arraySigmaZ764000
MicroTissues 3D Petri Dish micro-mold spheroids - 9 x 9 arraySigmaZ764019
phosphate saline buffer (PBS)Sigma806552
sodium chloride (NaCl)SigmaS8776
tissue culture flaskCorning430720U
trypanLonza17-942E
trypsinGibco27250018
ultrapure agaroseInvitrogen16500100

Références

  1. Gentile, C. Filling the gaps between the in vivo and in vitro microenvironment: Engineering of spheroids for stem cell technology. Current Stem Cell Research & Therapy. 11 (8), 652-665 (2016).
  2. Bartosh, T. J., et al.

Réimpressions et Autorisations

Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE

Demande d’autorisation

Explorer plus d’articles

Bioing nierienum ro 181

This article has been published

Video Coming Soon

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.