A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Neuroscience
* These authors contributed equally
As a severe progressive degenerative disease, cervical spondylotic myelopathy (CSM) has a poor prognosis and is associated with physical pain, stiffness, motor or sensory dysfunction, and a high risk of spinal cord injury and acroparalysis. Thus, therapeutic strategies that promote efficient spinal cord regeneration in this chronic and progressive disease are urgently needed. Effective and reproducible animal spinal cord compression models are required to understand the complex biological mechanism underlying CSM. Most spinal cord injury models reflect acute and structural destructive conditions, whereas animal models of CSM present a chronic compression in the spinal cord. This paper presents a protocol to generate a rat spinal cord compression model, which was further evaluated by assessing the behavioral score and observing the compressed spinal cord region. The behavioral assessments showed decreased monitor motor disability, including joint movements, stepping ability, coordination, trunk stability, and limb muscle strength. Hematoxylin and eosin (H&E) staining and immunostaining revealed considerable neuronal apoptosis in the compressed region of the spinal cord.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved