JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このプロトコルを記述する方法高解像度イメージング スペクトル領域光干渉断層法などと小さい齧歯動物, 眼科画像処理プラットフォーム システムを使用してに関する情報を取得するに活用できるレーザー眼底をスキャン網膜厚とミクログリア細胞の分布、それぞれ。

要約

スペクトル領域光干渉断層法 (SD OCT) と走査レーザー眼底検査 (SLO) は、実験眼科で幅広く使用されています。現在のプロトコルを発現するマウス緑蛍光蛋白質 (gfp) Cx3cr1のプロモーター (BALB/c-Cx3cr1gfp/gfp) ミクログリア細胞体内の網膜のイメージのために使用されました。ミクログリアは網膜のマクロファージであり、いくつかの網膜疾患1,2,3,4,5,6に関与しています。このプロトコルは、網膜 B-スキャンの SD-10 月、SLO は生体内でCx3cr1gfp/gfpマウスのミクログリア細胞分布のイメージングと眼画像処理プラットフォーム システムを使用して生成の詳細なアプローチを提供します。プロトコルは、レポーター マウスのいくつかの行で使用することができます。ただし、ここで示されるプロトコルをいくつかの制限があります。まず、両方の SLO と SD 10 月では、高分解能モードで使用する場合高軸方向の解像度が横方向の解像度を持つデータを収集が低い (3.5 μ m と 6 μ m、それぞれ)。さらに、SLO のフォーカスと彩度レベルはパラメーターの選択や目の適切な配置に依存です。さらに、マウスの人間の患者はマウス眼の高い合計光学力のために挑戦のために設計されたデバイスを使用してください。 人間の目と比較してください。これはとりわけマウス レンズによって倍率に依存でもある横倍率誤り7、可能性があります。しかし、軸のスキャン位置にもかかわらず、横倍率に依存して、軸の SD 10 月測定は正確な8

概要

実験眼科で網膜の病理検査では組織学的手法を使用して評価、通常。しかし、組織は動物 euthanization を必要とし、組織の実際のプロパティに変更を引き起こす可能性があります。SD 10 月と SLO が定期的に眼科で使用される臨床診断用といくつかの網膜疾患網膜色素変性症11 や前部虚血性視神経症10、糖尿病黄斑浮腫9などの監視のため.SD 10 月 SLO は、非侵襲的手法、さら、介入を使わないで瞳孔を通して可視化、網膜の高解像度画像を生成します。SD-10 月は、SLO 蛍光網膜の立体の高コントラストの画像を生成するデータを収集中に、網膜の断面像を作成する後方散乱データを集めることによって網膜の厚さと網膜の構造の情報を提供します。今日では、両方の技術はますます小さい齧歯動物12,13,14,15 (または) を使用もゼブラフィッシュ16,17実験眼科で使用され、することができます。両方質的・量的情報12,17,18,19,20,21を提供します。

Lipofuscins のような内因性蛍光物質の蓄積や乳頭部のドルーゼン、網膜の形成が自動蛍光信号として SLO で視覚化できます。この機能は、診断と網膜症加齢黄斑変性症や網膜色素変性症22,23などの監視のための貴重な技術を SLO になります。実験眼科でレポーター マウスの行の特定のセル型の検出の自動蛍光 (AF) を使用できます。たとえば、 Cx3cr124のプロモーターの gfp 発現のヘテロ接合体マウスは通常の網膜におけるミクログリア細胞の生体内可視化およびミクログリア/マクロファージの調査のために有利です網膜疾患21のダイナミクス。ミクログリアは、網膜のマクロファージ組織恒常性と損傷1,25,26の時に組織の修復に重要な役割を果たしています。網膜におけるミクログリアの活性化が、網膜の損傷、虚血、変性、網膜疾患2,3,4,5,におけるこれらの細胞の役割を示唆している報告されています。6

この議定書の目的Cx3cr1gfp/gfpマウス網膜を使って gfp 陽性ミクログリア細胞の可視化、網膜イメージングおよび SD-OCT による網膜の厚さの測定のための比較的簡単なメソッドを記述することです。SLO (ハイデルベルク Spectralis HRA + OCT システム)。このプロトコルはマウスの各種の行の健康または病気の網膜のイメージングや膜厚計測の利用できます。さらに、同定及び定量化のミクログリア数字と SLO21を使用して網膜におけるミクログリアの活性化の形態計測学的解析を実行できます。ミクログリア細胞は網膜27,28,29を含む中枢神経系 (CNS)、変性疾患に関連付けられます。したがって、この議定書で使用される 2 つの方法を組み合わせることによってミクログリア分布と網膜変性の相関を行うことができますは、重症度監視を容易にすることができますをまたは生体内で治療の有効性に近づきます。

プロトコル

すべての手順で BALB/c 雌雄成体 Cx3cr1 のプロモーター gfp を表現するいた使用 24。マウスは、眼科と視覚に関する研究における動物の使用の ARVO 声明に従って扱われ、すべてのプロシージャは、動物福祉に関するスイス連邦政府の規則によるとスイス政府から承認されました。マウス塩酸メデトミジン (0.75 mg/kg) とケタミン (45 の mg/kg の皮下注射で麻酔をかけられました。適切な麻酔は呼吸率および動物の監視によって確認された ' 尾ピンチに対して s 反射。実験の最後に、マウスは、CO 2 吸入で安楽死された

注: 各撮像セッションを (最大 20 分) 可能な限り迅速に実行、白内障形成以来次の麻酔は網膜の可視化 30 を妨げる可能性があります

1 ですシステム構成

  1. コンピューターをオンにします。
  2. は、電源をオンに。メッセージ " 開始集録モジュール " デバイスのコントロール パネル画面に表示されます
  3. ソフトウェアのソフトウェアを動作するようにデスクトップのショートカットをダブルクリックします
  4. データベース ビューをクリックして、" 患者を追加 " アイコン
  5. ポップアップ ウィンドウにすべての必要な情報を挿入 (姓、名、タイトル、生年月日、性別、患者 ID)] をクリックして " [ok] を "。ポップアップ ウィンドウに角膜の曲率を 2 mm に設定し、クリックして " ok ".
  6. 標準 30 ° 光の前に 78 D 眼科用非接触スリット標準ランプ レンズを置き、テープで固定して安全にします
  7. デバイスの左側にフィルターのレバーは徴候に配置されることを確認してください " A " IR + 10 月と AF ( 図 1) をイメージングできるように

2。マウス作製

リン酸緩衝生理食塩水 (PBS、pH 7.4) 麻酔ソリューションを準備する 45 の mg/kg の
  1. 使用メデトミジン塩酸塩投与量 0.75 mg/kg と、ケタミンの投与量。したがって、20 g マウス 18 μ L の PBS で 50 μ L の最終巻にケタミンと塩酸メデトミジンの 15 μ L をミックスします。1 週間 4 ° C でソリューションを保存します
  2. マウスの襟首をつかみ、瞳孔拡張を達成するためにそれぞれの目のトロピカミド 0.5% + フェニレフリン塩酸塩 2.5% の一滴を適用します
  3. は、拘束された、マウスを維持し、麻酔液の 50 μ L を皮下注入インスリン注射器 30 G 針に接続と。加熱パッドの上に配置、そのケージに戻るには、マウスを置きます。マウスは完全に鎮静するまで 3-5 分を待ちます。麻酔の深さを評価するために、マウスの尾をピンチします。角膜反射を確認するには、綿棒を使ってマウス角膜に優しく触れます。正反射が観測されない場合はイメージングに進みます
    。 注: 麻酔中に呼吸数を監視することが重要です。マウスは完全に鎮静がない、痛みを伴う刺激に呼吸数が増加します
  4. 水和物 2% ヒドロキシプロピルメチル セルロースのアプリケーションでマウス角膜をそれぞれの目にドロップします

3。SD 10 月

  1. デバイスのあごの残り ( 図 1) に接続されているカスタム プラットフォームへおよそ 32 ° C の温暖化のパッチを配置します
  2. 。 右の目をイメージする
  3. は、プラットフォーム ( 図 1) の左側の部分にマウスを配置します。マウスの右の軌道面レンズ、その体はあるプラットフォームの左部分に発生しやすいことを確認します
  4. で右目ヒドロキシプロピルメチル セルロースのドロップを適用し、それを +4 ディオプター厳格なガス透過性コンタクト レンズを慎重に移動 (球状の力: +25.00 ジオプトリーに-25.00)。バランスの取れた塩溶液 (BSS) にコンタクト レンズを格納します。レンズをつかむに損傷を防ぐためプラスチックやシリコンの鉗子を使用します
  5. は、集録モジュール ( 図 2 a に緑のボックス) を開始するコントロール パネル表示の右に黄色のボックスを押します。黄色のボックスは緑色になりコントロール パネル メニュー画面 ( 図 2 a) に表示されます
  6. B-スキャンの買収は、コントロール パネル ( 図 2 a) のオプション IR + 10 月を選択します。選択した設定がコントロール パネルに青色で強調表示されます
  7. 選択 " 網膜 " 下 " 構造とアプリケーション " ソフトウェアおよび移動マウス眼レンズのデバイス ( 図 1) のマニピュレーターを使用して。網膜上に焦点を当て、前にことを確認、表示 " OD " 画面の左下の部分で選択しました。ソフトウェアは自動的に左 (OS) を識別し、右 (OD) 目が目的の位置に基づきます
    。 注: プラットフォームの中間に位置づけ、エラー メッセージが画面の下部に表示されます。その場合は、再配置マウス少しソフトウェアが正しい目を認識するまで.
  8. 網膜上フォーカス フォーカスのノブで、コンピューター画面の左上の眼底写真で大きな船が見えるまで。左または右、その方向にカメラを移動するまたは時計回りまたは反時計回りに、カメラを上または下に移動する、マイクロマニピュレーターを回してカメラを移動します
    。 注: プラットフォーム上のマウス位置を変更または赤外線映像で視神経乳頭の最寄りのローカリゼーションを達成するためにレンズ上方または下方に移動します
  9. ノブの感度を抑える反時計回りまたは時計回りに眼底画像の明度を上げます。最適なフォーカスを達成すると、SD 10 月 B スキャンは画面の右側に表示されます
    。 メモ: B-スキャンは、フォーカスを調整することによって可視化することはできません、する場合は、キーボードの組み合わせ Ctrl + Alt + Shift + O を押します。ポップアップ ウィンドウに B-スキャンは、画面に表示されるまでに参照アームの値を調整します
  10. 画面の右下にパターン メニュー ( 図 2 b で単一行) から単一のスキャンを選択します
  11. デバイス ( 図 1) のマイクロマニピュレーターをオンに左、右、前方、または後方 (その方向にカメラを回す) する B-スキャンは、上部と下部の間あるように SD 10 月の角スキャン ウィンドウ
  12. は、高品質の画像を取得する、少なくとも 9 自動リアルタイム (芸術) 値を設定します
    。 注意: 芸術は、いくつかの連続したスキャンを平均することによって画質を向上します。高い、" アート " 値より高い信号対雑音比および従ってイメージの質。ただし、増、" アート " 値、取得時間も増加します
  13. プレス、" を取得 " コントロール パネルの画面で ( 図 2) ボタンをクリックし、画像を取得します
  14. 左目をイメージし、繰り返し手順 3.2 3.12 マウスを再配置
  15. プラスチック/シリコン鉗子でコンタクト レンズを外し、BSS にそれを配置します
  16. ヒドロキシプロピルメチル セルロースの新鮮なドロップとマウス角膜をメタンハイド レートし、ティッシュ ペーパーと超過分を削除します
  17. 標準 30 ° 光学を反時計回りに回転させることにより削除します
  18. 55 ° のレンズをマウントし、目ごとの手順 3.4 3.12 を繰り返します

4。自動蛍光イメージング

  1. プラットフォーム上、マウスを動かさずにコントロール パネルで IR を選択します
  2. 大きな網膜血管に焦点を当てる、フォーカスノブと
  3. コントロール パネルで AF を選択します
  4. は、ツマミを減らすために反時計回りに回してください。または時計回りに画像の明度を上げます
  5. 感度つまみを押し、設定、" アート " 67 以上高品質を得るためのイメージする値
  6. ときセット " アート " 値に達してを押して " を取得 " 画像が取得できるコントロール パネルの。平均を停止してもう一度ツマミを押してください。網膜の異なるレイヤーを視覚化する、フォーカスを調整します
  7. 55 ° のレンズを取り外すし、広いフィールド 102 ° のレンズをマウントします。手順 4.1 – 4.6 各マウスの両方の目とすべてのマウスします
  8. をクリックして “ 画像を保存 ” ウィンドウとクリックの左の上部のボーダーに “ 終了 ”。コンピューターに画像を保存するには、マウスの名前をダブルクリックして、画面の右側の部分のリストからマウスを選択します。個別に各画像をダブルクリックし、フロッピー ディスク アイコンをクリックします。.Tif ファイル、.bmp、.jpg、または目的のフォルダーで .png としてイメージを保存します。ソフトウェアのプレスを終了する “ ファイル ” と “ 終了 ”.

5。麻酔逆転

  1. ヒドロキシプロピルメチル セルロースの 1 つのドロップとマウスの目を水和物し、加熱パッドでマウスを返します
  2. 塩酸メデトミジンの鎮静作用を逆に 2.25 mg/kg の線量で準備アチパメゾール ソリューション。20 g のマウスでは、150 μ L の PBS の最終巻の atipamezol の 9 μ L を追加します。1 週間 4 ° C でソリューションを保存します
  3. 分後に麻酔薬注射 (手順 2.2)、注入アチパメゾール ソリューションの 150 μ L を皮下
  4. は、麻酔から回復までマウスを監視します。マウスが完全に回復した (アチパメゾール注射後 5-10 分) あるとき、ケージに戻す。回復は 1 つの側面に置いたとき、その体に動物の能力によって示される歩行活動と環境刺激応答反応を取り戻すします

6。SD OCT 画像から手動の網膜厚測定

  1. OCT スキャンを開くには、動物の名前をダブルクリックします
  2. 30 ° または 55 ° のレンズで得られた B-スキャンを開く
  3. 選択 " 厚さプロファイル ".
  4. プレス、" 編集レイヤーの区切り " アイコン ( 図 2 b)。ソフトウェアが自動的に内部を制限することを識別し、膜を基本します
  5. を必要に応じて、手動で内部制限の位置修正膜を基本とします。これを行うには、画面をクリックし、赤い円オプション ( 図 2 b) の左側にあるから変更するレイヤーを選択します。行を変更するのには押されたマウスのボタンが付いている円の移動
  6. は、正しく対応するレイヤーを配置する行を変更します。クリックして " を保存して閉じます " ウィンドウを終了します
    。 注: 脈絡膜の反射率によりソフトウェアが正しく識別するない基本膜。したがって、それは網膜の厚さ測定に進む前に手動でそれを定義することをお勧めします
  7. 選択 " 網膜 " の下で、" 層 " オプション。網膜厚の図は、画面の下部に表示されます
  8. 選択した位置の異なる位置図または網膜の厚さ (μ m で示されます) を表示する B-スキャンのいずれかをクリックします
  9. 視神経乳頭から目的の距離で網膜の厚さを測定し、スプレッドシート内の値をコピーします
  10. 30 ° と 55 ° のレンズの両方のそれぞれについてマウス 5.1 5.9、手順を繰り返します
  11. 希望のソフトウェアと統計分析を実行します

結果

ここで提示されたプロトコルを使用して、SD OCT スキャンし、SLO 画像は、同じ撮像セッションでCx3cr1gfp/gfpマウスから得られました。図 3には、代表者 SD 10 月 gfp 陽性ミクログリア細胞が視覚化される 55 ° または 102 ° レンズで得られる 30 ° または 55 ° レンズ (図 3 a) と代表的な SLO 画像で得られた単一のスキ...

ディスカッション

本稿は、網膜 B-スキャンの買収と同じ撮像セッションでマウス網膜における gfp 陽性ミクログリア分布のイメージングのためのプロトコルを示します。SD 10 月と SLO はますます時間10,14,17,18,21に網膜の変化の情報を提供するために網膜疾患の動物モデルで使用されます。?...

開示事項

著者が明らかに何もありません。

謝辞

この作品は、スイスの全米科学財団 (SNSF; #320030_156019) の補助金によって支えられました。著者らは、ハイデルベルク工学 GmBH は、ドイツから金融サポートを受け取った。

資料

NameCompanyCatalog NumberComments
Spectralis Imaging system (HRA+OCT)Heidelberg Engineering, GermanyN/Aophthalmic imaging platform system
Heidelberg Eye ExplorerHeidelberg Engineering, GermanyN/AVersion 1.9.13.0
78D standard ophthalmic non-contact slit lamp lensVolk Optical Inc., Ohio, USAV78C
Spectralis wide angle 55° lensHeidelberg Engineering, Germany50897-002
ultra widefield 102° lensHeidelberg Engineering, Germany50117-001
medetomidine hydrochloride 1 mg/mL (Domitor)Provet AG, Lyssach, SwitzerlandSwissmedic Nr. 50'590 - ATCvet: QN05CM91anesthetic/analgesic
ketamine 50mg/ml (Ketalar)Parke-Davis, Zurich, Switzerland72276388anesthetic
tropicamide 0.5% + phenylephrine HCl 2.5% (Augentropfen mix)ISPI, Bern, SwitzerlandN/Apupil dilation
Omnican Insulin-50 0.5 ml G30 0.3 x 12mmB. Braun Mesungen AG, Carl-Braun-Straße, Germany9151125
hydroxypropylmethylcellulose (Methocel 2%)OmniVision, Neuhausen, SwitzerlandN/A
+4 dpt rigid gas permeable contact lensQuantum I, Bausch + Lomb Inc., Rochester, NYN/ABase Curve: 7.20 to 8.40 mm
Diameter: 9.00 / 9.60 / 10.20 mm
Power: -25.00 to +25.00 Diopters
balanced salt solution (BSS)Inselspital, Bern, SwitzerlandN/A
silicon forcepsN/AN/A
atipamezole 5 mg/mL (Antisedan)Provet AG, Lyssach, SwitzerlandN/Aα2 adrenergic receptor antagonist
GraphPad Prism 7GraphPad Software, Inc, San Diego, CA, USAN/Astatistical analysis software

参考文献

  1. Madeira, M. H., Boia, R., Santos, P. F., Ambrosio, A. F., Santiago, A. R. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators Inflamm. , 673090 (2015).
  2. Ng, T. F., Streilein, J. W. Light-induced migration of retinal microglia into the subretinal space. Invest Ophthalmol Vis Sci. 42 (13), 3301-3310 (2001).
  3. Langmann, T. Microglia activation in retinal degeneration. J Leukoc Biol. 81 (6), 1345-1351 (2007).
  4. Joly, S., et al. Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol. 174 (6), 2310-2323 (2009).
  5. Arroba, A. I., Alvarez-Lindo, N., van Rooijen, N., de la Rosa, E. J. Microglia-mediated IGF-I neuroprotection in the rd10 mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci. 52 (12), 9124-9130 (2011).
  6. Zhang, C., Lam, T. T., Tso, M. O. Heterogeneous populations of microglia/macrophages in the retina and their activation after retinal ischemia and reperfusion injury. Exp Eye Res. 81 (6), 700-709 (2005).
  7. Geng, Y., et al. Optical properties of the mouse eye. Biomed Opt Express. 2 (4), 717-738 (2011).
  8. Lozano, D. C., Twa, M. D. Development of a rat schematic eye from in vivo biometry and the correction of lateral magnification in SD-OCT imaging. Invest Ophthalmol Vis Sci. 54 (9), 6446-6455 (2013).
  9. Vaz-Pereira, S., et al. Optical Coherence Tomography Features Of Active And Inactive Retinal Neovascularization In Proliferative Diabetic Retinopathy. Retina. 36 (6), 1132-1142 (2016).
  10. Kokona, D., Haner, N. U., Ebneter, A., Zinkernagel, M. S. Imaging of macrophage dynamics with optical coherence tomography in anterior ischemic optic neuropathy. Exp Eye Res. , (2016).
  11. Makiyama, Y., et al. Macular cone abnormalities in retinitis pigmentosa with preserved central vision using adaptive optics scanning laser ophthalmoscopy. PLoS One. 8 (11), e79447 (2013).
  12. Paques, M., et al. High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse. Vision Res. 46 (8-9), 1336-1345 (2006).
  13. Joshi, R., et al. Spontaneously occurring fundus findings observed using confocal scanning laser ophthalmoscopy in wild type Sprague Dawley rats. Regul Toxicol Pharmacol. 77, 160-166 (2016).
  14. Muraoka, Y., et al. Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography. PLoS One. 7 (4), e36135 (2012).
  15. Fischer, M. D., et al. Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One. 4 (10), e7507 (2009).
  16. Bell, B. A., et al. Retinal vasculature of adult zebrafish: in vivo imaging using confocal scanning laser ophthalmoscopy. Exp Eye Res. 129, 107-118 (2014).
  17. Bailey, T. J., Davis, D. H., Vance, J. E., Hyde, D. R. Spectral-domain optical coherence tomography as a noninvasive method to assess damaged and regenerating adult zebrafish retinas. Invest Ophthalmol Vis Sci. 53 (6), 3126-3138 (2012).
  18. Huber, G., et al. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci. 50 (12), 5888-5895 (2009).
  19. Dysli, C., Enzmann, V., Sznitman, R., Zinkernagel, M. S. Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images. Transl Vis Sci Technol. 4 (4), 9 (2015).
  20. Sim, D. A., et al. A simple method for in vivo labelling of infiltrating leukocytes in the mouse retina using indocyanine green dye. Dis Model Mech. 8 (11), 1479-1487 (2015).
  21. Bosco, A., Romero, C. O., Ambati, B. K., Vetter, M. L. In vivo dynamics of retinal microglial activation during neurodegeneration: confocal ophthalmoscopic imaging and cell morphometry in mouse glaucoma. J Vis Exp. (99), e52731 (2015).
  22. Acton, J. H., Cubbidge, R. P., King, H., Galsworthy, P., Gibson, J. M. Drusen detection in retro-mode imaging by a scanning laser ophthalmoscope. Acta Ophthalmol. 89 (5), e404-e411 (2011).
  23. Greenstein, V. C., et al. Structural and functional changes associated with normal and abnormal fundus autofluorescence in patients with retinitis pigmentosa. Retina. 32 (2), 349-357 (2012).
  24. Jung, S., et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 20 (11), 4106-4114 (2000).
  25. Wang, X., et al. Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina. J Neurosci. 36 (9), 2827-2842 (2016).
  26. Ebneter, A., Casson, R. J., Wood, J. P., Chidlow, G. Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci. 51 (12), 6448-6460 (2010).
  27. Ebneter, A., Kokona, D., Schneider, N., Zinkernagel, M. S. Microglia Activation and Recruitment of Circulating Macrophages During Ischemic Experimental Branch Retinal Vein Occlusion. Invest Ophthalmol Vis Sci. 58 (2), 944-953 (2017).
  28. Lin, Y. L., Potter-Baker, K. A. Using theoretical models from adult stroke recovery to improve use of non-invasive brain stimulation for children with congenital hemiparesis. J Neurophysiol. , (2017).
  29. Combadiere, C., et al. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest. 117 (10), 2920-2928 (2007).
  30. Bermudez, M. A., et al. Time course of cold cataract development in anesthetized mice. Curr Eye Res. 36 (3), 278-284 (2011).
  31. Toth, C. A., et al. A comparison of retinal morphology viewed by optical coherence tomography and by light microscopy. Arch Ophthalmol. 115 (11), 1425-1428 (1997).
  32. Ebneter, A., Kokona, D., Jovanovic, J., Zinkernagel, M. S. Dramatic Effect of Oral CSF-1R Kinase Inhibitor on Retinal Microglia Revealed by In Vivo Scanning Laser Ophthalmoscopy. Transl Vis Sci Technol. 6 (2), 10 (2017).
  33. Gabriele, M. L., et al. Reproducibility of spectral-domain optical coherence tomography total retinal thickness measurements in mice. Invest Ophthalmol Vis Sci. 51 (12), 6519-6523 (2010).
  34. Nakao, S., et al. Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice. Invest Ophthalmol Vis Sci. 54 (8), 5288-5293 (2013).
  35. Wang, N. K., et al. Origin of fundus hyperautofluorescent spots and their role in retinal degeneration in a mouse model of Goldmann-Favre syndrome. Dis Model Mech. 6 (5), 1113-1122 (2013).
  36. Wang, N. K., et al. Cellular origin of fundus autofluorescence in patients and mice with a defective NR2E3 gene. Br J Ophthalmol. 93 (9), 1234-1240 (2009).
  37. Thanos, S. Sick photoreceptors attract activated microglia from the ganglion cell layer: a model to study the inflammatory cascades in rats with inherited retinal dystrophy. Brain Res. 588 (1), 21-28 (1992).
  38. Hughes, E. H., et al. Generation of activated sialoadhesin-positive microglia during retinal degeneration. Invest Ophthalmol Vis Sci. 44 (5), 2229-2234 (2003).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

129

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved