A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This protocol describes how high-resolution imaging techniques such as spectral domain optical coherence tomography and scanning laser ophthalmoscopy can be utilized in small rodents, using an ophthalmic imaging platform system, to obtain information on retinal thickness and microglial cell distribution, respectively.
Spectral domain optical coherence tomography (SD-OCT) and scanning laser ophthalmoscopy (SLO) are extensively used in experimental ophthalmology. In the present protocol, mice expressing green fluorescent protein (gfp) under the promoter of Cx3cr1 (BALB/c-Cx3cr1gfp/gfp) were used to image microglia cells in vivo in the retina. Microglia are resident macrophages of the retina and have been implicated in several retinal diseases1,2,3,4,5,6. This protocol provides a detailed approach for generation of retinal B-scans, with SD-OCT, and imaging of microglia cell distribution in Cx3cr1gfp/gfp mice with SLO in vivo, using an ophthalmic imaging platform system. The protocol can be used in several reporter mouse lines. However, there are some limitations to the protocol presented here. First, both SLO and SD-OCT, when used in the high-resolution mode, collect data with high axial resolution but the lateral resolution is lower (3.5 µm and 6 µm, respectively). Moreover, the focus and saturation level in SLO is highly dependent on parameter selection and correct alignment of the eye. Additionally, using devices designed for human patients in mice is challenging due to the higher total optical power of the mouse eye compared to the human eye; this can lead to lateral magnification inaccuracies7, which are also dependent on the magnification by the mouse lens among others. However, despite that the axial scan position is dependent upon lateral magnification, the axial SD-OCT measurements are accurate8.
In experimental ophthalmology, examination of retinal pathology is usually evaluated using histological techniques. However, histology requires animal euthanization and may cause alteration to the actual properties of the tissue. SD-OCT and SLO are routinely used in clinical ophthalmology for diagnostic purposes and for the monitoring of several retinal diseases such as diabetic macular edema9, anterior ischemic optic neuropathy10, or retinitis pigmentosa11. SD-OCT and SLO are non-invasive techniques that generate high-resolution images of the retina, which are visualized through the dilated pupil without further intervention. SD-OCT provides information of retinal structure and retinal thickness by collecting backscattering data to create cross-sectional images of the retina, while SLO collects fluorescence data to produce stereoscopic high-contrast images of the retina. Nowadays, both techniques are increasingly used in experimental ophthalmology using small rodents12,13,14,15 (or even zebrafish16,17) and can provide both qualitative and quantitative information12,17,18,19,20,21.
Accumulation of endogenous fluorophores like lipofuscins or the formation of drusen in the retina can be visualized by SLO as auto fluorescent signal. This feature makes SLO a valuable technique for diagnosis and monitoring of retinal diseases such as age-related macular degeneration or retinitis pigmentosa22,23. In experimental ophthalmology, auto fluorescence imaging (AF) can be used for the detection of specific cell types in reporter mouse lines. For example, mice heterozygous for the expression of gfp under the promoter of Cx3cr124 are advantageous for in vivo visualization of microglial cells in the normal retina and for the investigation of microglia/macrophage dynamics in retinal disease21. Microglia are the resident macrophages of the retina, which play a crucial role on tissue homeostasis and tissue repair upon injury1,25,26. Microglia activation in the retina has been reported in retinal injury, ischemia, and degeneration, suggesting a role of these cells in retinal disease2,3,4,5,6.
The aim of the present protocol is to describe a relatively simple method for retinal imaging and measurement of retinal thickness using SD-OCT, and for visualization of gfp positive microglia cells in the Cx3cr1gfp/gfp mouse retina using SLO (Heidelberg Spectralis HRA+OCT system). This protocol can be utilized for imaging and thickness measurements of healthy or diseased retinas in various mouse lines. Additionally, morphometric analyses can be performed for the identification and quantification of microglia numbers and microglia activation in the retina using SLO21. Microglia cells are associated with degenerative diseases in the central nervous system (CNS), including the retina27,28,29. Thus, by combining the two methods used in the present protocol, correlation of microglia distribution and retinal degeneration can be made, which can facilitate monitoring disease severity or the effectiveness of therapeutic approaches in vivo.
In all procedures, BALB/c adult male and female mice who express gfp under the promoter of Cx3cr1 were used24. Mice were treated according to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and all procedures were approved from the Swiss government according to the Federal Swiss Regulations on Animal Welfare. Mice were anesthetized by a subcutaneous injection of medetomidine hydrochloride (0.75 mg/kg) and ketamine (45 mg/kg). Proper anesthesia was confirmed by monitoring the respiratory rate and the animal's reflex against a tail pinch. At the end of the experiments, mice were euthanized with CO2 inhalation.
NOTE: Perform each imaging session as quickly as possible (maximum 20 min), since cataract formation following anesthesia may hamper retinal visualization30.
1. System Configuration
2. Mouse Preparation
3. SD-OCT
4. Auto Fluorescence Imaging
5. Anesthesia Reversal
6. Manual Retinal Thickness Measurement from SD-OCT Images
Using the protocol presented here, SD-OCT scans and SLO images were obtained from Cx3cr1gfp/gfp mice in the same imaging session. Figure 3 includes representative SD-OCT single scans obtained with a 30 ° or a 55 ° lens (Figure 3A) and representative SLO images obtained with a 55 ° or a 102 ° lens, where gfp positive microglia cells are visualized. Higher reflectivity of the choroid is obser...
The present article demonstrates a protocol for the acquisition of retinal B-scans and imaging of gfp positive microglia distribution in the mouse retina in the same imaging session. SD-OCT and SLO are increasingly used in animal models of retinal disease to provide information of retinal alterations over time10,14,17,18,21. With this protocol, Cx3cr1...
The authors have nothing to disclose.
This work was supported by a grant of the Swiss National Science Foundation (SNSF; #320030_156019). The authors received nonfinancial support from Heidelberg Engineering GmBH, Germany.
Name | Company | Catalog Number | Comments |
Spectralis Imaging system (HRA+OCT) | Heidelberg Engineering, Germany | N/A | ophthalmic imaging platform system |
Heidelberg Eye Explorer | Heidelberg Engineering, Germany | N/A | Version 1.9.13.0 |
78D standard ophthalmic non-contact slit lamp lens | Volk Optical Inc., Ohio, USA | V78C | |
Spectralis wide angle 55° lens | Heidelberg Engineering, Germany | 50897-002 | |
ultra widefield 102° lens | Heidelberg Engineering, Germany | 50117-001 | |
medetomidine hydrochloride 1 mg/mL (Domitor) | Provet AG, Lyssach, Switzerland | Swissmedic Nr. 50'590 - ATCvet: QN05CM91 | anesthetic/analgesic |
ketamine 50mg/ml (Ketalar) | Parke-Davis, Zurich, Switzerland | 72276388 | anesthetic |
tropicamide 0.5% + phenylephrine HCl 2.5% (Augentropfen mix) | ISPI, Bern, Switzerland | N/A | pupil dilation |
Omnican Insulin-50 0.5 ml G30 0.3 x 12mm | B. Braun Mesungen AG, Carl-Braun-Straße, Germany | 9151125 | |
hydroxypropylmethylcellulose (Methocel 2%) | OmniVision, Neuhausen, Switzerland | N/A | |
+4 dpt rigid gas permeable contact lens | Quantum I, Bausch + Lomb Inc., Rochester, NY | N/A | Base Curve: 7.20 to 8.40 mm Diameter: 9.00 / 9.60 / 10.20 mm Power: -25.00 to +25.00 Diopters |
balanced salt solution (BSS) | Inselspital, Bern, Switzerland | N/A | |
silicon forceps | N/A | N/A | |
atipamezole 5 mg/mL (Antisedan) | Provet AG, Lyssach, Switzerland | N/A | α2 adrenergic receptor antagonist |
GraphPad Prism 7 | GraphPad Software, Inc, San Diego, CA, USA | N/A | statistical analysis software |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved