Method Article
ここで提示する方法は、マイクロパターニングと定量イメージングを使用して、哺乳類培養における空間的組織を明らかにする。この技術は、標準的な細胞生物学研究室で確立することが容易であり、インビトロでのパターニングを研究するための扱いやすいシステムを提供しています。
生物学の基本的な目標は、開発中にパターンがどのように出現するかを理解することです。いくつかのグループは、幹細胞がマイクロパターンに空間的に限定されている場合にインビトロでパターニングを達成できることを示しており、したがって、生物学的原理の基本原理を識別するユニークな機会を提供する実験モデルを設定する。組織。
ここでは、方法論の独自の実装について説明します。標準的な細胞生物学研究室での確立を容易にするために、特殊な装置の必要性を減らすためにフォトパターニング技術を適応させました。また、標準的な形状や大きさのコロニー内の細胞のサブ集団の優先位置を正確に測定するために、自由でオープンソースで簡単に画像解析フレームワークを導入しました。この方法は、一見乱雑な細胞集団においても、パターニングイベントの存在を明らかにすることを可能にする。この手法は定量的な洞察を提供し、特定のパターニングプロセス上の環境の影響(物理的な手がかりや内因性シグナル伝達など)を切り離すために使用できます。
哺乳類系では、パターニングは細胞の集団挙動の緊急特性であり、適切な手がかりが細胞1、2、3、4に提供されれば、パターンはインビトロで形成され得る。5,6.インビトロで自己組織化する細胞の本質的能力を明らかにする1つの方法は、定義された形状とサイズ7、8、9、10のグループ/コロニーを形成するために細胞を強制することです.これを可能にする技術は、マイクロパターニング11である。マイクロパターニングにより、細胞外マトリックス(ECM)分子が表面に堆積する位置を正確に定義することが可能になります。これにより、セルが付着できる場所が決まり、セルが空間的に整理する方法が制御されます。
マイクロパターニングは、多数の用途を持つ技術であり、例えば、マイクロパターニングは、分化12の前に初期条件の標準化を可能にする。重要なことに、マイクロパターン化は細胞コロニーの大きさ、形状、間隔を容易に制御することを可能にし、この特性は、モルフォゲンまたは物理的な手がかりに細胞の集合的応答を尋問することを目的とした実験を考案するために使用することができる7,8,10歳,13歳,14歳,15歳,16歳,17.
いくつかのマイクロパターニング方法が開発されている11.フォトパターニング技術は、おそらく18を確立するための最も簡単な方法です。これらのアプローチはまた、単一細胞18、19、20の形状を制御するために使用することができるので、精度の利点を持っています。しかし、彼らはまた、一般的に標準的な生物学の実験室で容易に利用できないスピンコーター、プラズマ室およびUVO(UV-オゾン)クリーナーを含む高価な専門装置を必要とします。技術の採用を容易にするために、我々はUVOランプだけを必要とするプロトコルを適応させました。私たちは、はさみでカットしたり、所望のフォーマットに穴パンチで切断することができる市販のプラスチックスライドから始まります。
マイクロパターンの重要な有用性の1つは、複数の反復にわたって個々のコロニーを比較するためにコロニーを標準化する能力です。これにより、これらのコロニー内のパターン形成がどの程度再現可能であるかを尋ね、パターニングプロセスの堅牢性に影響を与える因子を探索することができる。重要なのは、複数の標準化されたコロニーにわたる「平均化された」パターンの定量化は、それ以外の場合には明らかでないパターン化プロセスを明らかにすることもできる。標準化されたコロニーのパターニングを定量化できる利点は、理想的には単一細胞レベルでタンパク質発現を正確に測定できることにあります。しかし、マイクロパターン上の細胞は密集していることが多く、高精度でセグメント化することが困難です。また、セルは 2 次元ではなく 3 次元で編成されることが多く、セグメンテーション中に 3 次元 (3D) 情報を検出して保存することは困難です。セルが正常にセグメント化されると、結果のデータセットからパターニング情報を抽出するための計算方法が必要になります。
これらの問題を克服するためにセグメンテーションと画像解析ツールを開発しました。この分析方法は、フリーでオープンソースのソフトウェアのみを使用し、実装するコマンドラインやプログラミングの知識を必要としません。ここでの方法を説明するために、早期分化ブラチュリー(Tbra)21,22のマーカーを自発的に発現するマウス胚性幹(mES)細胞を用いる。明らかな空間配置は視覚的に検出できませんが、この方法はコロニー内のT+細胞の優先的な位置決めのマップを作成することを可能にします。我々はまた、Tbraパターン化がId1を発現する細胞の優先局在化の欠如と対照的であることを示し、骨形態形成タンパク質(BMP)経路23の直接読み出しである。また、この方法の現在の制限と、この手法を他の実験システムに適合させる方法についても議論する。
注: メソッドの概要は、図1に示されています。
1. マスクデザイン
2. マイクロパターン製造手順
3. 播種手順
注:以下に説明するステップは、標準的なmESC培地を用いてCGR8マウス胚性幹細胞(mESC)24用に最適化されています(材料の表も参照)。ただし、原則として、任意の細胞型に対して手順を適応させることが可能です。また、マウス胚性幹細胞の従来の細胞培養は、広範な文書化が他の場所で見出すことができるとしてここに記載されていないことにも注意してください25.
4. 固定
注:培養中の48時間後、細胞はパターンの形状に厳密に従う密集したコロニーを形成する必要があります(図2bに示すように)。
5. 免疫染色
6. イメージング
注:イメージ投射は標準的な共焦点顕微鏡で行うことができる。ここでは、後続の定量分析に十分な画質を確保するための推奨事項のみを提供します。
注意: オペレータのバイアスを避けるために、画像へのコロニーは核エンベロープ信号を使用してのみ選択する必要があります(コロニーがパターンの形状に正しく従っているかどうかを確認します)。顕微鏡の設定を調整する場合を除き、目的のマーカーの信号をチェックすることは避けてください。
7. 画像解析
注: この手順で推奨されるコンピュータの仕様は、16 GB RAM、マルチコア 3.33 GHz CPU、および少なくとも 50 GB のディスク領域 (イメージされたチップの数に応じて) です。ソフトウェアは、Linux、WindowsとMacOS上でテストされています。PickCellsは、複雑な多次元画像における細胞の集合的組織の分析に特化したグラフィックユーザーインターフェイスを備えたクロスプラットフォーム画像解析アプリケーションです(Blin et al.,)。PickCells に関する詳細情報と、ここで説明した特定のモジュールのドキュメントについては、オンラインで見つけることができます: https://pickcellslab.frama.io/docs/。また、我々はソフトウェアを改善し続けるにつれて、インターフェイスが変更されることに注意してください。インターフェイスが図またはビデオに示されているものと異なる場合は、オンラインマニュアルを参照してください。
8. R分析
ここで説明するフォトパターニング法は、培養細胞を定義された形状およびサイズのコロニーに正確に整理することを可能にする。この手順の成功は、図2aに示すように、付着細胞がフォトマスクの設計に従ってクラスタリングされるため、細胞播種手順(ステップ3.7)の直後に明らかにされるべきである。細胞播種後1時間で、個々のパターンは完全に結合しない(パターンあたり数個の細胞のみ)が、細胞が経つにつれて増殖するにつれて、パターンは接着面の外側のごく少数の細胞で完全に植民地化される(図2b)。カルチャの正確な外観は、セルラインに依存します。例えば、mESCフォームドーム型コロニー10.セルシード後にパターニングが1~2時間明確でないチップは、手順の失敗を示します(図2c,d)。
大きくて厚いコロニーは、均質に染色するのが難しい場合があります。抗体の浸透を改善することができるので、細胞を1ステップ(セクション4)で固定し、透過することを提案する。これは、選択された固定液が洗剤を含む理由です。図3は、免疫染色後に予想される蛍光シグナルを示す。明るい Id1 陽性細胞は、コロニーの密な領域 (明るい NPC 領域) 内に見つかります (図 3A)。このようなヒントは、抗体染色手順の品質を評価するのに有用である。また、本手法で作成されたマイクロパターンは自己蛍光である。この信号(図3A、B左ほとんどの画像)は、解析段階でコロニーを互いに空間的に登録し、図5に示す結果を作成するのに役立ちます。自己蛍光信号は、サンプルが405 nmレーザーで励起され、このチャネルがこの目的のために染色せずに残されるべきであるときに一般的に最も明るいです。図 3は、異なる形状のパターンにセルを正確に拘束する方法も示しています。
イメージングデータの分析は、私たちの研究室で開発されたフリーでオープンソースのソフトウェアであるPickCellsで行われます(Blin et al.,)。このソフトウェアには、共焦点イメージを読み取り、並べ替える画像解析モジュール (図 4-1)、セグメント化 (図4-2、4-4)およびセグメント化されたオブジェクト (図 4-3,4-5)を含み、オブジェクトを計算します。座標や平均強度などのフィーチャ (図 4-6)とデータをエクスポートします (図4-7,4-8)。重要なのは、マイクロパターンで増殖した細胞などの細胞の密度が高く不均一な集団に特に適する、Nessys28と呼ばれる堅牢な核セグメンテーション法を開発したことです(図3)。図 4-2は、個々のセルに一意の色の同一性が正確に与えられる Nessys モジュールの代表的な出力を示しています。最小限の編集のみが必要ですが、ユーザーがそう判断した場合に編集が可能です (図 4-3)。最後に PickCells には、データを視覚化するための多くの視覚化モジュールが用意されています。図4-6に例を示します: リング状のコロニーは、Z 軸に沿った位置に従って核が色分けされた 3D でレンダリングされます。PickCells で解析が検証されると、図 530に示すように、(https://framagit.org/pickcellslab/hexmapr) で使用できるスクリプトを使用して、R で空間マップを作成するデータをエクスポートできます。
我々は最近、小さい(30,000 μm 2)ディスクまたは楕円マイクロパターン上のmESCの空間的閉じ込めが中皮マーカーTbra10を発現する細胞の亜集団のパターン化を導くであることを示した。したがって、ここで我々の方法を説明するために、Tbraのパターニングは、より大きなコロニー(90,000 μm2)におけるBMPシグナル伝達の影響を受ける可能性があるかどうかを尋ねます。図 5Aは、mESC が大きなディスク マイクロパターンで成長する場合、Tbra+ セルがパターンの周辺(Tbra+ 密度マップ)に優先的に制限され、ローカルセル密度が最も低いことを示しています(図 5Aの左側の青いマップを参照)。).このトブラのパターン化は、平均トブラ強度の地図によって確認される。
これらのデータは、メソッドがサブビジュアル情報を明らかにできることを示しています。実際、図3から、1つのコロニーの目視検査は、Tbra発現における空間的組織の任意の形態を同定するのに十分ではない。これは、図5Aの右端のパネルに定量化され示されるコロニー変動に対する重要なコロニーによって特に説明される。
この手法は、T パターニングがこのコンテキストで BMP シグナリングによって駆動されていないことを示す可能性のある Id1 (BMP シグナリングのターゲット) に対して検出可能なパターニングが存在しないことも示しています。
マイクロパターン化により、コロニーにほぼすべての所望のジオメトリを強制的に採用させることができます。これは、システムがさまざまなジオメトリにどのように応答するかを調える場合に特に便利です。たとえば、コロニーの中心にモルフォゲン勾配が蓄積すると、コロニーに穴が開くと、この勾配が乱れる場合があります。興味深いことに、我々はまだあまり堅牢ではない方法で、リングマイクロパターン上のパターンを観察します(図5B)。
図 1: メソッドの概要。メソッドの主な手順を示す図。各ステップについて、タスクの名前で推定時間が示され、回路図は手順の目的を示します。関連する図形への参照も、使用可能な場合に提供されます。この図のより大きなバージョンを表示するには、ここをクリックしてください。
図2:培養外観1時間及び48時間後に細胞をマイクロパターンに播種した。マイクロパターンに播種されたmESCのブライトフィールド画像。(a) シード後1時間の予想細胞組織は、パターンを明確に識別可能にすべきである。(b) 48時間後の予想結果。mESC は増殖し、パターンシェイプに厳密に限定されています。(c-d)可能な非最適な結果は、スライドの周辺部(c)を除いてプラスチックに付着する細胞が非常に少ないか、またはパターン(d)の間に付着する細胞である。トラブルシューティング ガイドについては、表 2を参照してください。この図のより大きなバージョンを表示するには、ここをクリックしてください。
図3:マイクロパターン上で成長した免疫染色コロニーの代表的な共焦点画像。
(A)Id1および核細孔複合体または(B)トブラおよびラミンB1に対する免疫蛍光後の代表的なmESCコロニー。染色ごとに、ディスクマイクロパターン上で成長したコロニーとリングマイクロパターン上で成長したコロニーが示されている。個々のチャンネルは、グレースケール画像として提供されます。マイクロパターンの透明な自動蛍光信号(405nmレーザー励起)に注目してください。スケールバーは50 μmを表し、この図のより大きなバージョンを表示するにはここをクリックしてください。
図4:画像解析手順のフローチャート。3D 共焦点イメージのリストは、分析のために PickCellsにインポートされます (1)。この例では、2 つの異なる形状 (図 2のようにディスクとリング) を使用した実験を示しています。イメージの命名規則は左側に、PickCells インターフェイスは右側に表示されます。次に、Nessys モジュールを使用して、自動的に核 (2) をセグメント化します。スクリーンショットでは、個々の核には、正確なセグメンテーションを示す一意の色が与えられます。パターンの自己蛍光もセグメント化され、今回は「基本セグメンテーション」モジュール(4)を使用する。背景は青と白の信号で表示され、パターン形状として定義されます。次に、セグメント化された図形を視覚的に検査して正確なセグメンテーションを確認し、必要に応じてセグメンテーション エディタ モジュール(3-5)を使用して編集します。スクリーンショットには、検出された図形の輪郭が表示されます。ピンクと黄色の図形が編集されました。最後に、オブジェクト フィーチャが計算され、後で R (6-7)に処理されるファイルにエクスポートされます。3D ビューとしてレンダリングされたコロニーのスクリーンショットが提供されます(6) .手順 2 ~ 6 では、この記事の執筆時点で PickCells インターフェイスで見つかったアイコンがステップ インデックスの横に表示されます。この図のより大きなバージョンを表示するには、ここをクリックしてください。
図5:2つの異なる転写因子とマイクロパターン形状の代表的な結果
(A)ディスク形状のマイクロパターンまたは(B)リング形状のマイクロパターン上で48時間成長したmESC用のビン化された空間マップ。各マイクロパターン形状について、細胞表現型に関係なく、セル密度のマップが青色のカラースケールで左側に表示されます。次に、各マーカー(一番上の行のTbraと一番下の行のId1)に対して、左から右に3つの異なるマップが提供されます:セルのみを表現するマーカーのセル密度マップ(しきい値ベースの解析)、平均マーカー強度のマップ(log2)とマップマーカー強度の標準偏差。強度は、任意の蛍光単位として与えられる。マップごとに、マイクロパターンの形状が白いアウトラインとして表示されます。この図のより大きなバージョンを表示するには、ここをクリックしてください。
ECM タイプ | ゼラチン | フィブロネクチン | 地下膜マトリックス | |
濃度 | ECM濃度 | 1 mg/mL | 20 μg/mL | 200 μg/mL |
ポロクサマー 407 濃度 | 500 μg/mL | 400 μg/mL | 1 mg/mL | |
テスト済み | mESC | うん | うん | うん |
mEpiSC | 違います | うん | うん | |
血清フリー培地 | 違います | うん | うん |
表1:ポロクサマー407およびECMの濃度を試験した。この表は、当社のラボでテストしたECMおよびポロクサマー407の濃度の概要を示しています。ECM/ポロクサマー407の組み合わせごとに、パターニングが成功した細胞タイプと、培養に血清が含まれているかどうかが示される。mESC=マウス胚性幹細胞、mEpiSC=マウスエピブラスト幹細胞。
手順 | 観測 | 考えられる問題 | ソリューション |
マイクロパターニング | 低セルの添付ファイル | 不適切なECM/ポロクサマー307濃度比 | ECM/ポロクサマー307濃度比を高める |
セルの接続時間が短すぎます | インキュベーション時間を増やして、細胞がパターンに適切に付着するのに十分な時間を与えます(ステップ3.4)。この工程を最適化するために、顕微鏡で細胞をチェックすると、細胞が付着し始めたことを示す細胞形態の変化を検出するのに役立ちます。 | ||
洗い過ぎ(ステップ3.6) | 培地を交換する場合は、チップに直接媒体をピペッティングすることは避けてください。代わりに、代わりに井戸の壁にメディアを穏やかにピペ | ||
細胞はパターンの間に付着する | 不適切なECM/ポロクサマー307濃度比 | ECM/ポロクサマー407濃度比を下げ | |
セルの接続時間が長すぎます | インキュベーション時間を短縮します(ステップ3.4)。 | ||
洗い物が無効(ステップ3.6) | プレートを激しく振ることは、通常、過剰に細胞を剥離するのに十分である。チップに強く付着する傾向がある細胞タイプの場合、チップに直接ピペッティングすると、結果が向上する可能性があります。特に、このステップの後に培地内にセルが浮遊していないことを確認するために、洗い出しの数を増やすことも役立ちます。 | ||
セルがパターンシェイプに厳密に従わない | 「互換性のない」セルタイプとパターンジオメトリ | フォトマスクに追加する複数のジオメトリ/サイズを計画/設計し、特定のパターン形状とセルタイプに最適なパターンサイズをテストおよび識別できるようにします。ディスカッションの「制限事項」セクションを参照してください。 | |
非最適なフォトパターニングは、これは自己蛍光信号の鮮明さを観察することによって診断することができる。パターン境界は図 2 のようにシャープに見える必要があります。パターンの境界線がぼやけているように見える場合は、写真のパターニングステップを改善する必要があります。 | ぼやけたパターンエッジは、プラスチックスライドが照明ステップ中にマスクの表面に十分に近づいていなかったことを示します。フォトマスクにスライドを保持しているピースが均一であり、照明手順中にアセンブリに一定の十分な圧力が加えられるようにします。 | ||
染色 | 非均質な染色 | 抗体インキュベーション時間が短すぎる | 抗体のインキュベーション時間を増やす(室温で最大24時間) |
取り付け手順中に平坦化されたコロニー | チャンフリードやサイトゥーチャンバーなどのチャンムやサイトゥーチャンバーなどのチャンバーにマイクロパターンスライドを取り付け、細胞を取り付けることなく免疫染色とイメージングの両方を行います。これにより、コロニーの 3D 構造が維持されます。 | ||
染色手順中にコロニーを切り離す | チップのデウェット | 十分な培地を残すか、2ピペットを使用し、1つは培地を取り除き、もう1つは新鮮な溶液を追加します。 | |
コロニーは顕微鏡の下でせこく見える | 顕微鏡スライドにチップを取り付けている間、コロニーは引き起された | チップを取り付けるときには、非常に穏やかです。あるいは、カムライドやサイトゥーチャンバーなどのチャンム室にマイクロパターンスライドを取り付け、細胞を取り付けることなく免疫染色とイメージングの両方を行う。これはまた、コロニーの超構造を保持します。 |
表 2: トラブルシューティング ガイド。次の表に、最適でない結果の概要を示します。問題の潜在的な原因は、推奨される解決策と共に一覧表示されます。
ここでは、細胞培養における新たなパターン化を解析する方法について述べている。セルコロニーの形状とサイズを標準化するために簡略化されたマイクロパターン化アプローチを用い、これらのコロニー内のパターンの検出と定量を可能にする画像解析ツールとRスクリプトを紹介する。
我々が提案するパイプラインは、著者が市販のマイクロパターンを使用して培養条件に焦点を当てた以前に公開された方法31とある程度類似しており、ESCコロニーにおける再生可能な生殖層層形成を得る。インビトロにおける初期の胃発生事象の研究。我々の目的は、細胞の集合的な組織が統計的分析後にのみ明らかになる可能性があるインビトロでのパターン形成の発見のための一般化可能なパイプラインを提供することに焦点を当てています。このため、複数のコロニーに対して3D空間における核位置の正確な識別と解析を可能にする堅牢な画像解析ワークフローを提供します(「パターン検出方法の利点と限界」セクションも参照)。ディスカッション)。また、長期的に市販のソリューションに代わる、より柔軟で安価な代替手段を提供するシンプルな社内マイクロパターニングアプローチを開発することにしました。
最後に、この原稿の改訂中に、Rスクリプトと同様のインビトロでのパターニング分析のための新しいパッケージが32をリリースされたことに注意してください。この新しいパッケージは、高スループットイメージングプラットフォームから得ることができる入力としてセル機能のテーブルを受け入れます。私たちは、プロトコルのステップ7で生成された核機能のテーブルは、この可能性をテストしていませんが、原則としてこの新しいパッケージへの入力として役立つと考えています。
他のセルタイプおよびコロニージオメトリへのメソッドの適応性
我々は、血清の存在下で多能性細胞の培養における中皮転写因子の出現を研究する文脈でこのアプローチを提示する。しかし、この方法は他の細胞型および無血清培養物に容易に適応可能であるが、ECM/ポロクサマー407濃度を最適化する必要があるかもしれない(トラブルシューティングガイドの場合は表1、表2を参照)。この方法はまた、マイクロパターンのより大きいまたは小さいサイズに、およびユーザーの必要性に応じて形状の広い範囲に適応させることができる。ただし、この方法を確立する際には、すべての形状/セル型の組み合わせが最適であるとは考えていないことに注意してください。例えば、mESCは高レベルのE-カドヘリン33,34を発現し、これらの細胞がECMを欠いている領域にまたがる集合的構造を形成することを可能にする。これらのセルは、鋭い角度を持つジオメトリや、パターンに小さな穴を含むジオメトリに厳密に従っていません。例えば、図3Bのリング上で、セルが中央領域を植民地化する過程にあることに注意してください。私たちの手の中で、より小さな中央領域は、mESCがリング状のコロニーを形成することを強制しませんでした。したがって、選択したセルタイプに適した最適なサイズと曲率をテストおよび識別できるようにフォトマスクを設計しながら、形状の多様性を含めることを強くお勧めします。
考慮すべきもう一つの重要な要因は、実験の長さと細胞の増殖速度です。一部の急速に増殖する細胞タイプ(多能性細胞を含む)では、何日もマイクロパターン上の細胞を維持することは困難な場合があります(mESCの場合は3日間が最大です)。また、マイクロパターン上の細胞の播種は、常にすべてのコロニーに最適に発生するとは限らないので、スペアを持つためにコロニーの過剰を播種することをお勧めします。
パターン検出方法の利点と限界
この方法の特に利点の1つは、複数の反復コロニーからの画像解析結果を組み合わせることによって「平均化された」パターンを検出する能力である(図5)。これは、個々のコロニーの検査から明らかでないパターニングイベントを明らかにすることができます。この「平均化」アプローチの欠点は、小さなスポットや狭いストライプなど、特定のタイプの反復パターンを見逃す可能性があることです。しかし、これらのタイプのパターンは、代わりに慎重に選択されたパターンサイズ8の組み合わせで明らかにされてもよい。また、ここで説明する画像解析パイプラインは、単一細胞とコロニー分解能の両方で定量的なデータを提供し、コロニー間変動のレベルを調査したり、複数でネイバー解析を実行したりする可能性を提供します。スケール10.
平均化方法のもう一つの重要な利点は、検出チャネルの利用可能な蛍動管によって制限されることなく、多くのマーカーの優先位置をマッピングする機会を提供することです。実際、ここで示した作品では分化のマーカーが2つだけ利用されていますが、コロニーを標準化し、「平均化」パターンを抽出できるため、異なるコロニーセットの分布マップを順番に比較することが可能になります。マーカーの一般的な空間的関係を明らかにします。
さらに、我々の焦点は分化のマーカーを研究することにあったが、分析方法は核マーカーが利用できる他の生物学的プロセスを研究するために拡張することができる。例えば、蛍光ユビキチン化細胞サイクル指標35(FUCCI)を含む細胞株のマイクロパターン化は、コロニーレベルの幾何学がグループ内の細胞周期事象にどのように影響するかを研究することを可能にするであろう。
今後の方向性
この方法は中程度のスループット画像解析に適していますが、画像取得は現在完全に自動化されていないので、非常に大規模な実験では制限される可能性があります。コロニーの定期的な配置は、単一細胞平均20のために開発されたものと同様に、完全に自動化された取得ルーチンを作成することを可能にする必要があります。しかし、コロニーの画像化に必要なフィールドのサイズが大きく、モザイク化が必要な場合があり、コロニーが3次元であるため、関連するコロニーのみをイメージングすることにより、データセットのサイズと取得時間の両方を短縮することが非常に望ましい。したがって、将来の取り組みは、関連するコロニーを識別し、各サンプルにイメージング座標を適応させる「インテリジェント」顕微鏡の開発に専念する可能性があります。これにより、時間と労力を削減するだけでなく、潜在的なオペレータのバイアスを防ぐことができます。
また、ユーザーが実行する必要があるステップの数を減らすことで、分析パイプラインをより効率的に行うこともできます。パイプライン構築メカニズムを構築し、Rを当社のソフトウェアに直接統合する計画があります(コードリポジトリの問題トラッカー[https://framagit.org/groups/pickcellslab/-/issues]のpickcells-api#3とpickcells-rjava#1も参照してください)。分析手順を完全に自動化すると、時間と労力が削減され、潜在的なユーザー エラーが制限されます。
最後に、我々の分析方法は、細胞パターンの動的性質をまだ完全に捕捉していないことに注意してください。一部の限られた動的情報は、スナップショットイメージ8、10、36の時系列を調べることによって抽出することができる。しかし、パターニングがどのように出現するかをよりよく理解したい場合は、細胞集団の歴史を記録できることが非常に望ましいです。1つの制限は、3D密度の細胞集団における個々の細胞の正確な追跡が依然として非常に困難な課題37であるということです。我々の細胞検出方法は、核エンベロープを使用し、密で重なり合う細胞集団28に特によく行います。核封筒のライブレポーターは、容易に入手可能である28、38およびマイクロパターニング技術の1つの利点は、細胞が長期イメージング中に視野の外に移動するのを防ぐために使用され得る。全体的に見て、最近確立されたツール28、39、40の組み合わせを使用して細胞の自動追跡が達成可能であり、これが根本的な新しい洞察をもたらすべきであると確信しています。自己組織化の原則。
著者は開示するものが何もない
この作品は、ヘンリー・ウェルカム卿の博士後期フェローシップ(WT100133からG.B.)、ウェルカム・トラスト・シニア・フェローシップ(WT103789AIA to S.L.)、ウェルカム・トラスト博士課程の学生シップ(108906/Z/15/ZからD.W.)によって資金提供されました。また、フォトパターニング技術の適応に関する彼のアドバイスに対して、マヌエル・テリー博士に感謝しています。
Name | Company | Catalog Number | Comments |
2-mercaptoethanol | Gibco | 31350-010 | handle in fume hood |
1× Master quartz anti-reflective chromium photomask | Toppan Photomask | Custom design | |
24-well plates | Corning | 3526 | |
4-well plates | Nunclon Delta | 176740 | |
5% Donkey Serum | Sigma | D9663 | |
Anti Nuclear pore complex | Abcam | ab24609 | Mouse monoclonal, use 1:1000 |
Anti-Id1 | Biocheck | 37-2 | Rabbit polyclonal, use 1:200 |
Anti-Lamin B1 | Abcam | ab16048 | Rabbit polyclonal, use 1:1000 |
Anti-Tbra | R&D | AF2085 | Goat ployclonal, use 1:400 |
Blocking Solution | NA | NA | 0.1% TritonX-100 0.01% Pluronic F-127 5% Donkey Serum 0.003% Sodium Azide In PBS |
CGR8 mESC | NA | NA | Reference: Mountford et al. PNAS, 1994 |
Fixation solution | NA | NA | 4% PFA diluted in washing solution |
Foetal bovine serum | Gibco | 10270-106 | Serum batches must be tested to ensure compatibility with ESC maintenance |
Gelatin | Sigma | G1890 | |
Glasgow Minimum Essential Medium | Sigma | G5154 | |
Laboratory Film | VWR | 291-1212 | |
Layout Editor Software | LayoutEditor | NA | https://layouteditor.com/ |
Layout Editor Software | Klayout | NA | https://www.klayout.de/ |
L-glutamine | Gibco | 25030-024 | |
LIF | Millipore | ESG1107 | |
MEM NEAA | Gibco | 11140-035 | |
mESC Culture medium | NA | NA | GMEM 10% FCS 100 U/ml LIF 100 nM 2-mercaptoethanol 1× non-essential amino acids, 2 mM L- glutamine 1 mM sodium pyruvate |
NH4Cl 50mM | Sigma | 9718 | |
Paraformaldehyde | Sigma | 158127 | CAUTION: Toxic, handle undiluted stocks in fume hood and wear protective equipment |
PBS (immunostaining) | Sigma | P4417 | Dilute in 200ml of ddH2O |
PBS (tissue culture) | Gibco | 11140-035 | |
Plastic slides | Ibidi | IB-10813 | |
Poloxamer 407 | Sigma | P2443 | |
ProLong Gold Antifade Mountant | Molecular Probes | P36930 | |
Sodium Azide | Sigma | 8591 | CAUTION: Toxic, handle in fume hood and wear protective equipment |
Sodium pyruvate | Gibco | 11360070 | |
TritonX-100 | Sigma | T8532 | |
Trypsin | Gibco | 25200056 | |
UVO cleaner | Jetlight, USA | 42-220 | CAUTION: Follow manufacturer’s safety recommendations |
Washing Solution | NA | NA | 0.1% TritonX-100 0.01% Pluronic F-127 In PBS |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved