JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

我々は、結膜下注射後の眼のリポソームの時空間分布を非侵襲的に研究するための光ファイバー共焦点レーザー微小内視鏡検査(CLM)の使用のためのプロトコルを提示する。

要約

結膜下注射は、角膜や結膜などの前眼の障壁をバイパスする容易なトランスクレラルアクセスのために眼薬を投与するための魅力的なルートです。結膜下注射時の薬剤の治療効果および薬物動態は、いくつかの研究で説明されているが、非常に少数は、薬物または薬物送達システム(DDS)の眼の分布を評価する。後者は、眼内DDS設計と薬物バイオアベイラビリティの最適化のために、所望の眼の局在化および作用持続時間(例えば、急性対長期)を達成するために重要である。本研究は、結膜下注射後の生きたマウスにおける蛍光リポソームの眼分布をリアルタイムで定性的に研究するための光ファイバー共焦点レーザー顕微鏡(CLM)の使用を確立する。これは、顕微鏡レベルでの組織の 生体内 視視検査のために設計されており、結膜下注射後に眼の注射剤の時空間分布を研究するCLMイメージング法の最初の完全な説明でもあります。

概要

生体系における薬物の血クリアランス、組織分布、および標的占有率は、生体内薬物の性質を理解するための柱である。前臨床動物モデルでは、これらのパラメータは、通常、薬物投与後の特定の時点で頻繁に血液および組織サンプリングによって評価される。しかし、これらの手順は、一般に侵襲的であり、多くの場合、非生存測定、および統計的パワーのための大きな動物コホートを必要とすることを含む。動物の過度の使用に対する倫理的な懸念と共に、余分なコストと時間が発生する可能性があります。その結果、非侵襲的イメージングは、バイオディストリビューション研究の不可欠なステップになりつつあります。共焦点レーザー顕微鏡(CLM1,2)は、高感度かつ高分解能の生きている動物の目の中で治療の時空間分布を非侵襲的に画像化する眼球用途に適しています1,3,4

CLMは、DDSおよび薬物バイオアベイラビリティの包括的な定量化に先立ち、リポソームなどの眼内薬物送達システム(DDS)の堅牢なスクリーニングを容易にする可能性を有する。リポソームは、物理化学的および生物物理学的特性を調整する柔軟性に対して魅力的です5,6,7,8,9,10,11は、多種多様な治療貨物をカプセル化し、薬物放出および作用持続期間の組織部位を制御する。リポソームは、モノクローナル抗体ベバシズマブ12などの大きな分子の送達のための眼球用途で使用されており、シクロスポリン13やガンシクロビル14のような小分子が使用されている。薬物を含むリポソームは、非リポソーム「フリードラッグ」製剤と比較して、生物学的半減期および長期治療効果を有する。しかし、眼組織における薬物分布は、典型的には、眼の流体成分(すなわち、血液、房水、および膜膜房151617)における薬物濃度から外挿される。装填された薬物貨物の初期のin vivo運命は、ナノキャリア自体の特性によって定義されるので、蛍光リポソームのCLMイメージングは、組織ターゲティングおよびその地で組織の滞留時間を明らかにする薬物の代理として役立つことができる。さらに、CLMによる送達の視覚的証拠は、DDS再設計を操縦し、薬物の治療上の利点を評価し、おそらく有害な生物学的事象(例えば、長引く期間のDDSの好ましくない局在化による組織毒性)を予測することさえできる。

ここで、デュアルバンドCLM系を有する生きたマウスにおけるリポソームの眼の生体分布を研究する方法について、ステップバイステップの手順を詳述する。この特定のCLMシステムは8フレーム/sの頻度の2色蛍光(緑および赤色の励磁レーザーは488 nmおよび660 nmで)をリアルタイムで検出できる。このプロトコルは、検出プローブを目の上に物理的に配置することにより、2%エバンスブルー(EB)染料で静脈内注射されたマウス(IV)での結膜下投与時の緑色蛍光リポソームの画像取得および分析を示す。EB色素は、赤い蛍光チャネルで血管形成構造を可視化するのに役立ちます。我々は、リン脂質POPC(すなわち、1-パルミトイル-2-オレロイルグリセロ-3-ホスホコリン)とフルオレセインタグリン脂質Fl-DHPE(すなわち、リン脂質を含む)で構成される100nm中性リポソームを評価する研究の代表的な結果を示す N-(フルオレセイン-5-チオカルバモイル)-1,2-ジヘキサ-デカノイルスン-グリセロ-3-ホスホエタノールアミン) 95% POPC: 5% Fl-DHPE (図1B)).CLMは、EB染色された眼組織境界の線引きによって、15 μm軸方向および3.30 μmの横方向分解能で緑色のフルオレセインタグ付きリポソームを捕捉することができます。

プロトコル

ここに記載されているすべての方法は、SingHealth(シンガポール)の制度的動物管理および使用委員会(IACUC)によって承認されています。メスのC57BL/6 Jマウス(生後6~8週、18~20g)はシンガポールのInVivosから入手し、シンガポールのデュークNUS医学部の温度と光制御されたビバリウムに収容された。動物は、眼科および視覚研究における動物の使用に関する視覚・眼科研究協会(ARVO)のガイドラインに従って治療された。

注: 主な手順を強調表示するフローチャートを 図 2 に示します。

1. 造影剤の調製: エバンスブルー (EB) とリポソーム

  1. 2%のEB色素溶液については、50mLの無菌生理食糸に1gのEBを溶解する。0.22 μmフィルターを使用して1.5 mLの無菌チューブにフィルターを入れ、室温で保存して後で使用します。
  2. 緑色蛍光リポソームの場合は、POPC/Fl-DHPE(95:5)、クロロホルム/メタノール(2:1)を100 mLの丸底フラスコに加えます。40°Cで150rpmのロータリーエバポレーターを1時間使用し、0 mbar1 で真空を維持して薄い脂質膜を作ります。
    注:分布に対するリポソーム特性(例えば、サイズ、電荷、脂質飽和、脂質鎖長)の影響を比較する場合、Fl-DHPEまたは他の蛍光脂質の一定の割合を維持し、観察された結果が試験された特性の影響によるものであり、かつ大きな疎水性染料の可変負荷に起因していないことを確認します。
  3. 脂質膜をリン酸緩衝生理食塩水(26.3mMの蛍光リポソームを達成するため)を40°Cで水和し、マルチラメラ小胞(MLV)を形成する。MLVをガラスシリンジにロードして、手動押し出し(0.08 μmの細孔サイズのポリカーボネートフィルターを使用して30回)、所望のサイズの100 nmを達成します。
    注: 水分補給の温度は、脂質の転移温度よりも高くなければなりません。
  4. リポソームを0.22 μmの滅菌シリンジフィルターに通してフィルターします。動的光散乱システムを使用してリポソームの流体力学的直径(DH)を確認します。

2. 生きたマウスにおけるEBおよびリポソームの投与

  1. 結膜下注射の2時間前に尾静脈(2.5mg/kg)を介してEB IV(静脈内)でマウスを注入します。
  2. 結膜下注射の場合、まず、十分な麻酔面を達成するために、誘導室で吸入を介して5%イオブルランを使用してマウスを鎮静させる。マウスを鼻コーンに移し、処置全体を通して加熱パッドの上でイオブルランの2%-2.5%で沈下を維持する。
  3. 注射する目の近くのウィスカーをトリミングし、目に直接0.5%プロキシメタカイン塩酸塩溶液の局所麻酔薬の滴を植え付けます。
  4. 蛍光リポソーム(Fl-DHPE:0.78 mg/kg)で10μLのガラスシリンジ(32G針付き)をロードし、注射前にシリンジ内のすべての気泡を払拭します。
    注:最大20 μLの注入は、mice18,19の結膜下腔に収容できます。
  5. トゥイザーを使用して、結膜を少し持ち上げ、結膜下腔にゆっくりと注入します(図1A)。逆流を防ぐために針をゆっくり引き出してください。蛍光リポソームで満たされた可視のブレブが形成されていることを確認します(図1C)。
  6. 注射後に1%のフシズ酸を目に投与し、意識を取り戻すまでマウスを監視する。

3. CLMセットアップ

  1. CLMシステムの電源を入れ、コネクタとスキャンプローブの遠位先端の両方がクリーンであることを確認します。
  2. メーカーの指示に従って、光学式コネクタクリーナーを使用してスキャンプローブのコネクタをクリーニングします。
    1. 光学コネクタクリーナーのラチェット(しばしば色付き)を押して、クリーニングリボンを表示します。
    2. コネクタをクリーニング リボンに接続して、接触を維持しながら、コネクタをリボンに沿ってスライドさせます。
  3. プローブの遠位先端(スキャンチップとも呼ばれる)をクレンジング液に浸し、続いてメーカーが提供するリンス溶液を洗浄します。綿の先端の塗布器はまた先端が非常に汚れている場合より徹底的なクリーニングのために使用することができる。
  4. プローブをCLMシステムに接続します。[視野(FOV)]と、この時点での取得ファイルの場所を選択します。
    注:Fl-DHPEの蛍光検出が線形範囲内になるように、このステップでレーザー強度を調整します。レーザー強度は、異なる時点で撮影された画像間の比較のために一貫して保たれている。
  5. 指示に従ってシステムを15分間ウォームアップし、校正キットを使用してメーカーの指示に従ってシステムをキャリブレーションします。
    注: キャリブレーション キットには、クレンジング ソリューション、リンス溶液、および内部校正用のフルオロフォア 488/660 nm 溶液の 3 つのバイアルがあります。キャリブレーション手順はシステムによってプロンプトされ、それに従う必要があります。
    1. クレンジングバイアルにチップを浸し、その後にリンスバイアル(各バイアルに5 s)を浸します。両方のチャンネルのバックグラウンド録画のために空中に置いておきます。
      注: このステップは、プローブの異なるファイバーからの背景値を正規化し、画像の均一性を保証するので非常に重要です。
    2. クレンジングバイアルにチップを浸し、その後にリンスバイアル(各バイアルに5 s)を浸します。プローブ内の異なる繊維からの信号値を正規化するために、5秒間フルオロフォア488nmバイアルにチップを浸します。
    3. クレンジングバイアルにチップを浸し、その後にリンスバイアル(各バイアルに5 s)を浸します。蛍光シグナルが3.5.2に記録されるまで、リンスバイアルにチップを浸します。消える。プローブ内の異なる繊維からの信号値を正規化するために、660 nmバイアルのフルオロフォアに先端を浸します。
      注:適切なキャリブレーションと最適な画質を実現するために、すべてのキャリブレーション手順に従ってください。
  6. プローブのキャリブレーションが完了したら、プローブのバックグラウンド値ができるだけ低いかどうかを確認します。使用する CLM システムの場合は、背景値を 100 以下にしてください。値が100/定義されたユーザー値を超えている場合、またはプローブが汚れているように見える場合は、綿の先端アプリケーターとキャリブレーションでプローブのクリーニングを繰り返し実行します。これは、バックグラウンドノイズが同じ値の周りに保持されることを保証するためです。
    注: プローブ条件が類似していることを確認するには、最大バックグラウンド値(手順 3.6 で説明した 100 など)を定義することが重要です。これにより、異なるタイム ポイントで撮影した画像間で適切な定量的比較が可能になります。この値は、システムやプローブの条件によって異なる場合があります。
  7. 動物温度コントローラ(ATC)のスイッチを入けます。ATC を 37 °C に調整します。 外科用ドレープで加熱パッドを覆い、加熱パッドのノーズコーンを固定します。
    注:画像撮影期間を通して動物が暖かく保たれるように、加熱パッドが付いているATCが必要です。
  8. 解剖顕微鏡のスタンドを卓上に固定して固定します。顕微鏡の接眼部を回転させて調整し、ユーザーが座ったときにマウスの目を眼球を通して目を通して回転させ、調整します(動物を置いた後に調整を行います)。
  9. 誘導チャンバーで5%イオブルランを使用してマウスを鎮静させます。動物が反応しなくなったらマウスを鼻コーンに移し、処置中に加熱パッドの上にいる間に2%-2.5%のイオブルランで沈下を維持する。
  10. マウスのウィスカをトリミングし、麻酔薬0.5%のプロキシメタカイン塩酸塩溶液を目に植え付けます。
  11. 目がきれいであることを確認するには、目の表面を洗浄するために生理液を数滴落とします。
  12. マウスの目が0.67倍の倍率で直接焦点を合わせるように顕微鏡を調整します。
    注:必ず目を生理食塩水で潤滑してください。画像処理を通して目が潤滑されない場合、乾燥し、レンズが結晶化する原因となります。その結果、CLMイメージング中に、レンズはバックグラウンドの赤色蛍光を発する可能性があります。

4. CLMと獲得によるマウス目のライブイメージング

  1. レーザーをオンにし、プローブを目の上に置き、取得の記録を開始し、 図3のアイマップに示された領域で目の蛍光を観察します。
    注: プローブの遠位端を持つペンのようにプローブを画像化する領域に直接保持します。
  2. すべてのリージョンにフラグが設定され、ラベルが付いてきたら、録画を停止します。取得ファイルは、手順 3.4 で選択したファイルの場所に自動的に保存されます。
    注:ファイルは、個々の画像にエクスポートすることができ、ビデオファイルとして保存されます。記録が行われた正確なフレームでのプローブの位置を正確に知るために、眼球図に従ってフラグにラベルを付けます。

5. 画像解析

  1. 同じCLM取得ソフトウェアを使用して、画像取得ファイルをエクスポートして、さらに分析します。[ファイル]をクリック |エクスポート して、エクスポート先の形式を選択します。Mkt形式のファイルは、検索テーブル(LUT)の調整を可能にし、CLMビューアソフトウェアを使用して画像ファイル形式にさらなるエクスポートを行います。
  2. 蛍光強度を正確に比較するには、すべての画像ファイルをエクスポートする際に、各チャンネルに対して調整された同じ LUT を使用します。
    注:バックグラウンド蛍光測定値を最小限に抑えるために、コントロールマウスの(リポソームを注入しない)に対して最小および最大のLUT閾値を選択します。
  3. 適切な画像処理ソフトウェア/フリーウェアプログラム(例えば、ImageJ)で画像を開きます。関心領域 (ROI) を描画します。
    注: ここでの ROI は、処理プログラムの対象地域を指します。ほとんどの場合、ROI は画像全体のスキャンになります。しかし、リンボを撮像する場合、プローブは手足の画像を別々に取得することはできません。したがって、 ROIは、図4に示すように、四肢領域の蛍光を「定量化」するために描かねなう必要があります。ROI の一貫性を保つには、すべてのイメージで同じ ROI を使用します。
  4. 緑色蛍光の ROI 値を測定および記録します。スプレッドシートに値を入力します。ROI の平均値と蛍光強度 (a.u.) の値を集計します。

6. ヒストロジー評価

  1. ローカルIACUCによって承認された方法を使用してマウスを安楽死させる。
  2. 眼を欠核化し、一晩4%ホルムアルデヒドまたは10%ホルマリン溶液の1mLで目を固定します。
  3. 余分な脂肪をトリミングし、最適な切断温度(OCT)化合物に目を埋め込み、少なくとも1日間-80°C冷凍庫で凍結し続けます。
  4. 20°Cに保たれた切断温度でクライオスタットの厚さ5μmの切削切れセクション。 セクションをポリL-リジンコーティング顕微鏡スライドに移します。
    注: ヒストロジーは、DDS の分布の追加の検証として機能できます。しかし、CLMを使用して削減することを目指す動物の追加の最適化、技術的専門知識、犠牲が必要です。

結果

このプロトコルは、結膜下注射によって投与される緑色蛍光リポソームの時空間的眼分布を評価するためのCLMの有用性を示す。CLM系のデュアルカラー機能(488nmおよび660nm励起波長)を利用するために、注入される100nm中性POPCリポソームを5%Fl-DHPE(組成および特性評価データを 図1Bに示す)でドープし、EBをIV注入して目のランドマークを識別した。高血管化されたエピスクレ?...

ディスカッション

結果から示されるように、CLMは目のリポソームの眼分布をイメージする簡単で実現可能な方法を提供する。我々は、以前に、時間1のマウスアイ内の様々なリポソーム製剤の局在化を特徴付けるためにCLMを使用することを実証した。非侵襲的な適用のために、CLMは、同じ動物から眼の中でリポソームがどのように分布しているかの洞察のために前眼表面のリアルタイムの画像...

開示事項

著者らは開示するものは何もない。

謝辞

この研究は、NTU-Northwesternナノ医学研究所(NNIN)助成金(SV)が授与され、シンガポール国立研究財団グラントAG/CIV/GC70-C/NRF/2013/2、シンガポールの健康・生物医学(HBMS)産業整合基金事前位置決め(IAF-PP)助成金H18/01/a0/018によって資金提供されました。 技術と研究(A*STAR)(AMCへ)。デュークNUSトランスレーショナル・アンド・モレキュライメージング研究所(LTMI)のメンバーに感謝し、機器の研究とトレーニングのロジスティクスと実行を促進しました。ウィスナ・ナフォラ氏の編集支援に感謝します。

資料

NameCompanyCatalog NumberComments
0.08 µm polycarbonate filterWhatman, USA110604
0.22 µm syringe filterFisherbrand, Ireland09-720-3
0.5% Proxymetacaine hydrochloride sterile opthalmic solutionAlcon, Singapore
10 µL Glass SyringeHamilton, USA65460-06
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)Avanti, USA850457
32 G needle (Hamilton, 0.5” PT4)Hamilton, USA7803-04
Animal Temperature Controller with heating plate (15 cm x 20 cm)WPI, USAATC 2000 & 61800
Cellvizio Dual Band, S1500 Probe and Quantikit (Calibration kit in step 3.5)Mauna Kea Technologies, FranceTip diameter: 1.5 mm, field of view: 600 µm x 500 µm, axial resolution: 15 µm, lateral resolution: 3.3 µm
ChloroformSigma Aldrich, USA472476
Dumont Tweezers #5, DumostarWPI, USA50023311 cm, Straight, 0.1 mm x 0.06 mm Tips
Evans BlueSigma Aldrich, USAE2129
Fusidic acid eye dropLEO Pharma, Denmark
ImageJNational Institutes of Health, USAhttps://imagej.nih.gov/ij/
IsofluranePiramal, USA
Malvern Zetasizer Nano ZSMalvern Panalytical, UK
MethanolSigma Aldrich, USA179337
Mini ExtruderAvanti, USA610020
N-(fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoylsn-glycero-3-phosphoethanolamine (triethylammonium salt) (FL-DHPE)Invitrogen, USAF362
Phosphate Buffered SalineGibco, USA10010023
Stereomicroscope System with table clamp standOlympus, Tokyo, JapanSZ51 & SZ2-STU3

参考文献

  1. Chaw, S. Y., Novera, W., Chacko, A. -. M., Wong, T. T. L., Venkatraman, S. In vivo fate of liposomes after subconjunctival ocular delivery. Journal of Controlled Release. 329, 162-174 (2021).
  2. Kuo, J. C. -. H., et al. Detection of colorectal dysplasia using fluorescently labelled lectins. Scientific Reports. 6 (1), 24231 (2016).
  3. Wu, Y. -. F., et al. A custom multiphoton microscopy platform for live imaging of mouse cornea and conjunctiva. Journal of Visualized Experiments: JoVE. (159), e60944 (2020).
  4. Zhivov, A., Stachs, O., Kraak, R., Stave, J., Guthoff, R. F. In vivo confocal microscopy of the ocular surface. The Ocular Surface. 4 (2), 81-93 (2006).
  5. Bassyouni, F., ElHalwany, N., Ab del Rehim, M., Neyfeh, M. Advances and new technologies applied in controlled drug delivery system. Research on Chemical Intermediates. 41 (4), 2165-2200 (2015).
  6. Sercombe, L., et al. Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology. 6, (2015).
  7. Koning, G. A., Storm, G. Targeted drug delivery systems for the intracellular delivery of macromolecular drugs. Drug Discovery Today. 8 (11), 482-483 (2003).
  8. Metselaar, J. M., Storm, G. Liposomes in the treatment of inflammatory disorders. Expert Opinion on Drug Delivery. 2 (3), 465-476 (2005).
  9. Ding, B. S., Dziubla, T., Shuvaev, V. V., Muro, S., Muzykantov, V. R. Advanced drug delivery systems that target the vascular endothelium. Molecular Interventions. 6 (2), 98-112 (2006).
  10. Hua, S., Wu, S. Y. The use of lipid-based nanocarriers for targeted pain therapies. Frontiers in Pharmacology. 4, 143 (2013).
  11. Sharma, A., Sharma, U. S. Liposomes in drug delivery: Progress and limitations. International Journal of Pharmaceutics. 154 (2), 123-140 (1997).
  12. Abrishami, M. M., et al. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated Bevacizumab (Avastin) for intravitreal administration. Retina. 29 (5), 699-703 (2009).
  13. Pleyer, U., et al. Ocular absorption of cyclosporine A from liposomes incorporated into collagen shields. Current Eye Research. 13 (3), 177-181 (1994).
  14. Shen, Y., Tu, J. Preparation and ocular pharmacokinetics of ganciclovir liposomes. The AAPS Journal. 9 (3), 371-377 (2007).
  15. Weijtens, O., et al. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. American Journal of Ophthalmology. 128 (2), 192-197 (1999).
  16. Voss, K., et al. Development of a novel injectable drug delivery system for subconjunctival glaucoma treatment. Journal of Controlled Release. 214, 1-11 (2015).
  17. Giarmoukakis, A., et al. Biodegradable nanoparticles for controlled subconjunctival delivery of latanoprost acid: In vitro and in vivo evaluation. Preliminary results. Experimental Eye Research. 112, 29-36 (2013).
  18. Shah, N. V., et al. Intravitreal and subconjunctival melphalan for retinoblastoma in transgenic mice. Journal of Ophthalmology. 2014, 829879 (2014).
  19. Dastjerdi, M. H., Sadrai, Z., Saban, D. R., Zhang, Q., Dana, R. Corneal Penetration of Topical and Subconjunctival Bevacizumab. Investigative ophthalmology & visual science. 52 (12), 8718-8723 (2011).
  20. Ezra-Elia, R., et al. Can an in vivo imaging system be used to determine localization and biodistribution of AAV5-mediated gene expression following subretinal and intravitreal delivery in mice. Experimental Eye Research. 176, 227-234 (2018).
  21. Movila, A., et al. Intravital endoscopic technology for real-time monitoring of inflammation caused in experimental periodontitis. Journal of Immunological Methods. 457, 26-29 (2018).
  22. Vanherp, L., et al. Bronchoscopic fibered confocal fluorescence microscopy for longitudinal in vivo assessment of pulmonary fungal infections in free-breathing mice. Scientific Reports. 8 (1), 3009 (2018).
  23. Chagnon, F., et al. In vivo intravital endoscopic confocal fluorescence microscopy of normal and acutely injured rat lungs. Laboratory Investigation. 90 (6), 824-834 (2010).
  24. Yun, J. Y., et al. The effect of near-infrared fluorescence conjugation on the anti-cancer potential of cetuximab. Laboratory Animal Research. 34 (1), 30-36 (2018).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

175

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved