サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

このプロトコルは、コーヒー - 真菌相互作用におけるペクチンを検出するための顕微鏡的方法を記載する。

要約

植物細胞は、真菌感染から身を守るために、構成的または誘導性のいずれかの異なる構造機構を使用する。カプセル化は、植物細胞プロトプラストから真菌ハウストリアを単離するための効率的な誘導可能な機構である。逆に、細胞壁のポリマー成分の1つであるペクチンは、壊死的相互作用におけるいくつかのペプチド分解酵素の標的である。ここでは、光学顕微鏡によってペクチンおよび真菌菌糸を検出するためのプロトコルが提示される。錆病菌 ヘミレイア・バスタトリックス に感染したコーヒー葉の細胞へのペクチンリッチなカプセル化と 、セルコスポラ・コフェイコーラ によって誘導された葉肉細胞壁修飾が調査される。病変葉サンプルをカルノフスキー溶液で固定し、脱水し、グリコールメタクリレートに2〜4日間包埋した。すべてのステップに続いて、細胞間空間内の空気を除去し、包埋プロセスを改善するための真空ポンピングが続いた。埋め込まれたブロックを厚さ5〜7μmのセクションに切断し、これを水で覆われたスライドガラス上に堆積させ、続いて40°Cで30分間加熱した。次に、スライドをラクトフェノール中の5%コットンブルーで二重染色して真菌を検出し、水中の0.05%ルテニウムレッドでペクチン(ペクチンのポリウロン酸の酸性基)を検出した。 ヘミレイア・バスタトリックスの 真菌ハウストリアはペクチンによってカプセル化されていることが判明した。コーヒーセルコスポリオーシスでは、葉肉細胞が細胞壁の溶解を示し、細胞間菌糸および分生子色素が観察された。ここで提示される方法は、植物−真菌相互作用におけるペクチン関連応答を検出するのに有効である。

概要

植物の細胞壁防御機構は、真菌感染を抑制するために重要である。研究は、19世紀以来の細胞壁の厚さと組成の変化を報告している1,2。これらの変化は、真菌が細胞に入るのを妨げる乳頭の形成を刺激する真菌病原体によって誘発され得るか、または真菌ハウストリアから宿主細胞プロトプラストを単離するために菌糸を封入するために使用することができる。動的細胞壁障壁(すなわち、乳頭および完全に包まれたハウストリウム)の産生は、植物抵抗性を促進するために重要である3。真菌関連疾患に関する病理組織学的研究は、これらのメカニズムの発生を調査し、細胞壁ポリマー、セルロース、ヘミセルロース(アラビノキシラン)、およびカロースを真菌攻撃に対する耐性メカニズムとして記述している4567

細胞壁は微生物の攻撃に対する最初の障壁であり、植物 - 真菌相互作用を損なう。ペクティック多糖類は細胞壁を構成し、ホモガラクツロナンが最も豊富なポリマーである真二子植物の初代細胞における細胞壁組成の約30%(約60%)を占める8。ゴルジ体は、ガラクツロン酸鎖を構成する複雑なペクチン化合物を分泌し、メチル化されていてもいなくてもよい8,9。2012年以来、文献は、ペクチンメチルエステル化の程度が微生物ペクチン酵素10、1112による感染時の適合性を決定するのに重要であることを指摘している。したがって、植物 - 真菌病態系におけるペクチック化合物の存在および分布を検証するためにプロトコルが必要である。

乳頭またはハウストリアのカプセル化を検出するために様々な技術が用いられてきた。使用される参照方法は、固定組織の透過型電子顕微鏡(TEM)および生体および固定組織の光学顕微鏡法である。TEMに関しては、いくつかの研究が真菌耐性における細胞壁アポジションの構造的役割を実証している13,14,15,16、およびレクチンおよび抗体の使用が炭水化物ポリマーを見つけるための複雑な方法であること16しかし、研究は、光学顕微鏡法が重要なアプローチであり、組織化学的および免疫組織化学的ツールが乳頭およびハウスストリウム包帯の組成をよりよく理解することを可能にすることを示している6,7

病原性真菌は、生物栄養性および壊死性の2つの主要なタイプのライフスタイルを示す。生物栄養性真菌は、その栄養のために生細胞に依存しているのに対し、壊死性真菌は宿主細胞を殺し、次いで死んだ組織に生息する17。ラテンアメリカでは、真菌Hemileia vastatrixによって引き起こされるコーヒー葉の錆は、コーヒー作物における重要な病気である18,19ヘミレイア・バスタトリックスは、生物栄養挙動を示し、耐性コーヒー種または栽培品種で観察される構造変化のうち、過敏応答、細胞壁へのカロース、セルロース、およびリグニンの沈着、ならびに細胞肥大14が報告されている。著者の知る限り、文献はコーヒーの錆び抵抗性におけるペクチンの重要性に関する情報を報告していない。一方、セルコスポリオーシスを引き起こす壊死性真菌は、ペクチナーゼおよびポリガラクツロナーゼ20などの細胞壁分解に関連する一連の酵素を介してペクチンを標的とする。コーヒー中のセルコスポリア症は、真菌Cercospora coffeicolaによって引き起こされる、コーヒー作物2122に対する主要な脅威でもある。この真菌は、葉と果実の両方に壊死性病変を引き起こす。浸透後、C.コフェイコーラは、細胞内および細胞間経路23、2425を介して植物組織にコロニー形成する。

本プロトコールは、細胞壁上の真菌構造およびペクチンの存在を調査する。このプロトコールは、真菌との生物栄養相互作用において宿主によって誘導されるペクチン(ペクチンのポリウロン酸の酸性基に特異的であるルテニウム赤色色素で染色される)に関連する植物応答を同定するのに有用である。また、壊死性真菌がペクチック細胞壁の分解に及ぼす影響を検証するのにも役立ちます。本結果は、二重染色法が真菌の構造や生殖期の判別に有効であることを示している。

プロトコル

緩衝溶液及び試薬の調製

  1. 100 mLの蒸留水に4.28 gのカコジル酸ナトリウムを加えて2 Mカコジル酸緩衝液を調製し、0.2 N HClでpHを7.25に調整します。
  2. 10mLの25%グルタルアルデヒド水溶液、10mLの10%ホルムアルデヒド水溶液、25mLの2Mカコジル酸緩衝液、および0.5mLの0.5M CaCl226を混合して、100mLのカルノフスキー固定液を調製する。蒸留水で100mLまでの容量を作ります。
    注:溶液は冷蔵庫に6ヶ月間保管することができます。
    警告: カコジル酸緩衝溶液は有毒です。したがって、固定液溶液をヒュームフードまたはオープンエリアで処理してください。溶液蒸気を吸い込まないようにし、取り扱い中は手袋を着用してください。
  3. 3 mM Ca(NO3)2.4H 2 O、2 mM NH 4H2 PO4、5 mM KH 2PO4、2 mMMgSO 4.7H2O、9.07 mM MnSO 4、0.765 mM ZnSO4.7H 2 O、46.4 mMH3BO3 0.09 mMNa2MoO4.H2O、0.01 mM CuSO4、および鉄-EDTA(エチレンジアミン四酢酸)として36 mM FeSO4.7H2O2Oが挙げられる27

2. 植物サンプルおよび真菌接種

注:コーヒーの錆びの影響を受けた葉の実験のために、 コーヒーアラビカ cvの5つの2ヶ月齢の苗木。カトゥアイはブラジルのサンパウロ州ピラシカバにあるサンパウロ大学の農業原子力センター(CENA)の温室で栽培され、保管されました。

  1. 250μmolの光子s-1 m-2の光子フラックスでLEDランプによって作成された12時間の光周期で27± 3°Cに保たれた成長チャンバー内で、ホーグランド水溶液(pH〜5.5)で満たされた500mLのプラスチックポットで4ヶ月間コーヒー植物を栽培する。ホーグランド養液を毎週4ヶ月間交換してください。
  2. それらのアブキシャル表面上の5つの植物から4つの膨張した葉を、参考文献28に記載の方法に従って1 x103H. vastatrix uredosporesに接種する。接種後、植物を黒いビニール袋で覆って暗闇の中で48時間保管してください。接種後30日目に病変を収穫する。 
  3. Coffea arabica cvからCercospora cfeicolaによって引き起こされる特徴的な病変を収穫する。ブラジル、サンパウロ州カンピナスの生物研究所にあるオバタン植物(座標:-22.906506126269942、-47.015075902025266)。試料を処理する前に、実体顕微鏡で病変を分析し、コーヒーC.コフェイコーラ分生子の存在を検証した。次に、分生子とともにいくつかのスライドを装着し、疾患病因22を確認する。

3. サンプルの採取、固定、脱水

  1. メスとピンセットを使用して、病変の中央領域で〜10mm2の葉サンプルを採取する(黄色の斑点;図1)30mLのカルノフスキー固定液に浸漬する(図1および図2A)。固定ステップは、冷蔵庫で48時間行うことができます。
  2. 少なくとも4回、葉の組織における固定液の透過性を高めるために、オイルポンプを使用して葉サンプルを低真空(500〜600mBar)にそれぞれ15分間供する。この手順は、サンプルの回転で実行します(図1)。
  3. 固定後、蒸留水で希釈した0.5 Mカコジル酸緩衝液(pH 7.2)で葉サンプルを5分間それぞれ3回洗浄し、その後、段階的なエタノール系列(30%、50%、70%、90%(2x)、および100%(2x))に各エタノール濃度で15分間移す(図1 および 図2B)。

4. 保存埋め込み手順

  1. 製造元の指示に従って、サンプルを3つのステップでグリコールメタクリレート(GMA)に徐々に移します。まず、GMA粉末(1g)と塩基性樹脂100mLを混合して溶液Aを作る(ヒトレシンキット; 材料表)磁気攪拌下で、以下の手順に従ってください。
    1. サンプルを1:2溶液A:100%エタノールに3時間浸漬する。
    2. サンプルを1:1溶液A:100%エタノールに3時間浸漬する。
    3. サンプルを純粋な塩基性樹脂に2〜4日間浸漬する。このステップの間、サンプルを1日4回、15分間、低真空にかけ、その後回転させる。

5. 重合

注: 重合プロセスには、1.2 mL のプラスチック金型、基本樹脂、および硬化剤が必要です (市販のキットの詳細については、 材料表 を参照してください)。

  1. 15 mLの溶液A(ステップ4.1)と1 mLの硬化剤を2分間回転させるビーカーで混合し、重合溶液(溶液B)を作製した。
  2. 2 mLの重合溶液(溶液B)をプラスチック金型に入れる。木製のピックを使用して、病変葉サンプルを純粋な塩基性樹脂から溶液Bに移します(図2C)。ピンセットは組織の破砕を引き起こす可能性があるため、使用しないでください。
  3. 溶液Bが5分以内に迅速に粘性になるように、葉のサンプルをプラスチック金型に対して垂直に素早く配向させるようにしてください。複数の病変葉サンプルを単一のカビに入れることができる。
    注:多くのサンプルを申請する前に、上記の手順を数回練習することをお勧めします。試料が多いと、鋳型間で重合時間が異なり、葉試料の垂直配向が達成しにくい場合がある。
  4. 葉サンプルの垂直配向が達成されたら、30分間待ってから、湿気を防ぐためにプラスチックモールドをシリカゲルを含むプラスチックまたはガラスチャンバに移す。重合のために2〜3時間待つ。
  5. 2〜3時間後に樹脂と葉サンプルが重合したら、ブロックベースをサンディングヤスリでサンディングして、得られたブロックをプラスチック金型から取り外します。次に、ブロックを木片に接着します(図2D)。

6. セクショニング

  1. 8cmのスチールブレードを備えた回転ミクロトーム(図2E)を使用して、ブロックを厚さ5μmのセクションに切断します。蒸留水で覆われたスライドガラスの上に切片を置きます。水上に浮いた切片を有するスライドを40°Cのホットプレートに移し、乾燥させ、スライドガラスへの切片の接着を促進する。
  2. 乾燥後(図2F)、スライドガラスにブロック参照名とスライド番号のラベルを付けます。

7. 二重染色プロセス

  1. ラクトフェノール(40%グリセロール、20%フェノール、および20%乳酸水)の5%コットンブルーの2mLで切片を覆い、45°Cのホットプレート上で5分間加熱する(図3A)。
  2. 蒸留水を満たしたビーカーでスライドを3回洗浄して余分な色素を除去する(図3B-D)。
  3. 2mLの0.01%ルテニウムレッドで1分間水中で染色する(図3E)。
  4. 蒸留水を満たしたビーカーでスライドを3回洗浄して余分な色素を除去します(図3F、G)。
  5. 切片の上に蒸留水1滴を入れ、光学顕微鏡分析を行うための24 mm x 60 mmのカバースリップで切片を覆います。

結果

GMA包埋部のコットンブルーラクトフェノール染色は、生物栄養性および壊死性真菌相互作用の両方において、コーヒー葉肉細胞間および内部にいくつかの真菌構造の存在を明らかにした。

生物栄養病原系において、二重染色法を用いて染色すると、細胞壁および緻密なプロトプラスト含量を含む ヘミレイア・バスタトリクス 菌糸は、海綿状および柵状実質の両方...

ディスカッション

本研究は、ハウストリアを生物栄養病態系に封入する細胞壁のペクチン組成を調べるための代替二重染色組織化学的試験を導入する。その目的はまた、壊死性真菌およびそれによって誘導される細胞壁変化を検出する方法の有効性を実証することである。ここで、コーヒー実質細胞壁のペクチンは、錆病菌ヘミレイア・バスタトリクスの首とハウスリウムの両方をカプセル化すること?...

開示事項

著者らは利益相反がないと宣言しています。

謝辞

著者らは、この研究を発展させるための支援について、ハドソン・W・P・デ・カルヴァーリョ博士に感謝したい。著者らはまた、電子顕微鏡研究所「北島エリオット渡辺教授」が光顕微鏡施設を提供してくれたことにも感謝している。著者らは、植物材料に病変を供給したFlávia Rodrigues Alves Patrício博士に感謝する。

資料

NameCompanyCatalog NumberComments
Blades DB80 HSLeica14035838383Sectioning
Cacodylate bufferEMS# 11652Fixation
Cotton Blue LactophenolMetaquímica70SOLSIG024629Staining
FormaldehydeEMS#15712Fixation
GlutaraldehydeEMS#16216Fixation
Historesin KitTechnovit /EMS#14653Historesin for embedding
Hot plateDubesserSSCD25X30-110VStaining
MicroscopyZeiss#490040-0030-000Image capture
Microtome (Leica RM 2540)Leica149BIO000C1 14050238005Sectioning
Plastic molding cup trayEMS10176-30Staining
Ruthenium redLABHouse#006004Staining
Software Axion VisionZeiss#410130-0909-000Image capture
Vaccum pumpPrismatec131 TIPO 2 V.C.Fixation

参考文献

  1. deBary, A. Research on the development of some parasitic fungi. Annals of Natural Sciences. Botany and Plant Biology. 20, 5 (1863).
  2. Mangin, L. Research on the Peronospores. Bulletin of the Natural History Society of Autun. 8, 55-108 (1895).
  3. Underwood, W. The plant cell wall: a dynamic barrier against pathogen invasion. Frontiers in Plant Science. 3 (85), 1-6 (2012).
  4. Hückelhoven, R. Cell wall-associated mechanisms of disease resistance and susceptibility. Annual Review of Phytopathology. 45, 101-127 (2007).
  5. Voigt, C. A. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers in Plant Science. 5 (168), 1-6 (2014).
  6. Chowdhury, J., et al. Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. Hordei. New Phytologist. 204 (3), 650-660 (2014).
  7. Marques, J. P. R., et al. Sugarcane cell wall-associated defense responses to infection by Sporisorium scitamineum. Frontiers in Plant Science. 9 (698), 1-14 (2018).
  8. Caffall, K. H., Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research. 344, 1879-1900 (2009).
  9. Carpita, N. C., Ralph, J., McCann, M. C. The cell wall. Biochemistry and Molecular Biology of Plants., 2nd Edition. , 45 (2015).
  10. Lionetti, V., Cervone, F., Bellincampi, D. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases. Journal of Plant Physiology. 169 (16), 1623-1630 (2012).
  11. Lionetti, V. Pectoplate: the simultaneous phenotyping of pectin methylesterases, pectinases, and oligogalacturonides in plants during biotic stresses. Frontiers in Plant Science. 6 (331), 1-8 (2015).
  12. Lionetti, V., et al. Three pectin methylesterase inhibitors protect cell wall integrity for Arabidopsis immunity to Botrytis. Plant Physiology. 173 (3), 1844-1863 (2017).
  13. Heath, M. C. Haustorium sheath formation in cowpea leaves immune to rust infection. Phytopathology. 61, 383-388 (1971).
  14. Silva, M. C., et al. Coffee resistance to the main diseases: leaf rust and coffee berry disease. Brazilian Journal of Plant Physiology. 18 (1), 119-147 (2006).
  15. An, P., Li, X., Zheng, Y., Eneji, A. E., Inanaga, S. Calcium effects on root cell wall composition and ion contents in two soybean cultivars under salinity stress. Canadian Journal of Plant Science. 94 (4), 733-740 (2014).
  16. Marques, J. P. R., et al. Sugarcane smut: shedding light on the development of the whip-shaped sorus. Annals of Botany. 119 (5), 815-827 (2017).
  17. Delaye, L., García-Guzmán, G., Heil, M. Endophytes versus biotrophic and necrotrophic pathogens-are fungal lifestyles evolutionarily stable traits. Fungal Diversity. 60 (1), 125-135 (2013).
  18. Avelino, J., et al. The coffee rust crises in Colombia and Central America (2008-2013): impacts, plausible causes and proposed solutions. Food Security. 7, 303-321 (2015).
  19. Zambolim, L. Current status and management of coffee leaf rust in Brazil. Tropical Plant Pathology. 41, 1-8 (2016).
  20. Swiderska-Burek, U., et al. Phytopathogenic Cercosporoidfungi-from taxonomy to modern biochemistry and molecular biology. International Journal of Molecular Sciences. 21 (22), 8555 (2020).
  21. Andrade, C. C. L., et al. Infection process and defense response of two distinct symptoms of Cercospora leaf spot in coffee leaves. Phytoparasitica. 49 (7), 727-737 (2021).
  22. Zambolim, L. Coffee tree diseases. Handbook of Phytopathology: Diseases of cultivated plants. 5th ed. , 810 (2016).
  23. Castaño, A. J. J. Coffee rust. Informative report Cenicafé. 82, 313-327 (1956).
  24. Echandi, E. Coffee rust, caused by the fungus Cercospora coffeicola. Turrialba. 9 (2), 54-67 (1959).
  25. Souza, A. G. C., Rodrigues, F. A., Maffia, L. A., Mizubuti, E. S. G. Infection process of Cercospora coffeicola on coffee leaf. Journal of Phytopathology. 159 (1), 6-11 (2011).
  26. Karnovsky, M. J. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology. 27, 137-138 (1965).
  27. Hoagland, D. R., Arnon, D. I. The water-culture method for growing plants without soil. College of Agriculture, Agricultural Experiment Station. , 347 (1950).
  28. Eskes, A. B. Resistance. Coffee rust: epidemiology, resistance and management. 1, 171 (1989).
  29. Silva, M. C., Nicole, M., Rijo, L., Geiger, J. P., Rodrigues, C. G. Cytochemical aspects of the plant-rust fungus interface during the compatible interaction Coffea arabica (cv. Caturra)-Hemileia vastatrix (race III). International Journal of Plant Sciences. 160 (1), 79-91 (1999).
  30. Alves, R. F., Marques, J. P. R., Apezzato-da-Glória, B., Spósito, M. B. Process of infection and colonization of Pseudocercospora kaki in persimmon leaves. Journal of Phytopathology. 169 (3), 168-175 (2020).
  31. Hayat, M. A. . Principles and Techniques of Electron Microscopy: Biological Applications, Vol. 1. , 564 (1981).
  32. Paiva, E. A. S., Pinho, S. Z., Oliveira, D. M. T., Chiarini-Garcia, H., Melo, R. C. N. Large plant samples: how to process for GMA embedding. Light microscopy: methods and protocols. 689, 37-49 (2011).
  33. Marques, J. P. R., Soares, M. K. M., Appezzato-da-Glória, B. New staining technique for fungal-infected plant tissues. Turkish Journal of Botany. 37 (4), 784-787 (2013).
  34. Schuller, A., Ludwig-Müller, J. Histological methods to detect the clubroot pathogen Plasmodiophora brassicae during its complex life cycle. Plant Pathology. 65 (8), 1223-1237 (2016).
  35. Braga, Z. V., Santos, R. F., Amorim, L., Appezzato-da-Glória, B. Histopathological evidence of concomitant sexual and asexual reproduction of Elsinoë ampelina in grapevine under subtropical climate. Physiological and Molecular Plant Pathology. 111, 101517 (2020).
  36. Marques, J. P. R., Soares, M. K. M., Piracicaba, F. E. A. L. Q. . Manual of Techniques Applied to Plant Histopathology. , 140 (2021).
  37. Navarro, B. L., Marques, J. P. R., Appezzato-da-Glória, B., Spósito, M. B. Histopathology of Phakopsora euvitis on Vitis vinifera. European Journal of Plant Pathology. 154, 1185-1193 (2019).
  38. Chesters, C. G. C. Three methods of using cotton blue as a mycological stain. Annals of Botany. 48 (3), 820-822 (1934).
  39. Macedo, N. A. Manual of Techniques in Plant Histology. Feira de Santana: State University of Feira de Santana. , 68 (1997).
  40. Lecker, A. Preparation of lactophenol cotton blue slide mounts. Community Eye Health Journal. 12 (30), 24 (1999).
  41. Whitakaer, F. C. S., Denison, F. C. S. Lactic acid in wool dyeing. Journal of the Society of Dyers and Colourists. 98, 103 (1895).
  42. Chamberlain, C. J. . Methods in Plant Histology. , 349 (1932).
  43. Sterling, C. Crystal-structure of ruthenium red and stereochemistry of its pectin stain. American Journal of Botany. 57, 172-175 (1970).
  44. Luft, J. H. Ruthenium red and violet. 1. Chemistry, purification, methods of use for electron microscopy and mechanism of action. The Anatomical Record. 171 (3), 347-368 (1971).
  45. Buckeridge, M. S., Cavalari, A. A., Silva, G. B. D. A., Kerbauy, G. B. Cell Wall. Plant Physiology. , 165-181 (2013).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

180

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved