JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

本プロトコルは、改良された一分子プルダウン(SiMPull)アッセイを用いてタンパク質リン酸化を定量するためのサンプル調製およびデータ分析について記載する。

要約

リン酸化は、タンパク質機能を調節し、細胞シグナル伝達の結果を導く必要な翻訳後修飾である。タンパク質リン酸化を測定する現在の方法は、個々のタンパク質にわたるリン酸化の不均一性を維持することができない。単一分子プルダウン(SiMPull)アッセイは、ガラスカバースリップ上のタンパク質の免疫沈降とそれに続く単一分子イメージング を介して 高分子複合体の組成を調査するために開発されました。現在の技術は、単一分子レベルでの全長膜受容体のリン酸化状態の堅牢な定量化を提供するSiMPullの適応である。このようにして何千もの個々の受容体をイメージングすると、タンパク質リン酸化パターンを定量化することができます。現在のプロトコルは、サンプル調製からイメージングまで、最適化されたSiMPull手順を詳述しています。ガラス調製および抗体固定プロトコルの最適化により、データ品質がさらに向上します。現在のプロトコルは、サンプル内でリン酸化された受容体の割合を計算する単一分子データ分析のためのコードを提供します。この研究は上皮成長因子受容体(EGFR)のリン酸化に焦点を当てているが、プロトコルは他の膜受容体および細胞質ゾルシグナル伝達分子に一般化することができる。

概要

膜関連シグナル伝達は、リガンド誘導膜受容体活性化およびシグナルを伝播する下流補助タンパク質の動員の組み合わせによって同調される。受容体細胞質尾部における重要なチロシンのリン酸化は、シグナル伝達複合体、またはシグナル伝達体1,2の形成を開始するのに重要である。したがって、生物学における重要な問題は、シグナル伝達パートナーを募集し、細胞転帰を決定するために、リン酸化パターンがどのように作成され、維持されるかである。これには、シグナル伝達3,4,5,6,7の組成を指示することによってシグナル伝達出力を操作する手段を提供できる存在量および特定のホスホチロシンパターンの両方における受容体リン酸化の不均一性を理解することが含まれる。しかしながら、タンパク質リン酸化を疑問視する現在の方法には限界がある。ウェスタンブロット分析は、タンパク質リン酸化の傾向を記述するのには優れていますが、半定量的8であり、数千から数百万の受容体が一緒に平均化されるためシステムの不均一性に関する情報を提供しません。ウェスタンブロットは、特定のチロシンに対するホスホ特異的抗体を使用してサンプルをプロービングすることを可能にするが、同じタンパク質内のマルチサイトリン酸化パターンに関する情報を提供することはできない。定量的ホスホプロテオミクスはホスホチロシンの存在量について報告するが、目的の残基が酵素消化によって生成されるのと同じペプチド(典型的には7〜35アミノ酸)内に位置する必要があるため、マルチサイトリン酸化を検出することには限界がある91011

上記の制限を克服するために、単一分子プルダウン(SiMPull)アッセイは、一分子レベルでインタクトな受容体のリン酸化状態を定量化するように適合されている。SiMPullは、Jainらによって高分子複合体を尋問するための強力なツールとして最初に実証された12,13。SiMPullでは、高分子複合体を抗体官能化ガラスカバースリップ上で免疫沈降(IP)し、次いでタンパク質サブユニット数および複合体成分12とのco-IPについて一分子顕微鏡を通して分析した。SiMBlotと呼ばれるKimら14による改変は、変性タンパク質のリン酸化を分析するためにSiMPullのバリエーションを使用した最初の改変であった。SiMBlotプロトコルは、NeutrAvidinコーティングされたカバースリップを使用してビオチン化細胞表面タンパク質を捕捉することに依存しており、その後、リン酸化についてリン酸化についてリン酸化がプローブされる14。これらの進歩にもかかわらず、翻訳後修飾の定量化をより堅牢にし、より広い範囲のタンパク質に適用できるようにするには、改善が必要でした。

本プロトコールは、リガンド条件および発癌性変異の範囲に応答してインタクトな上皮成長因子受容体(EGFR)のリン酸化パターンを定量するために使用された最適化されたSiMPullアプローチを記載する15。この研究はEGFRに焦点を当てていますが、このアプローチは、高品質の抗体が利用可能な目的の膜受容体および細胞質ゾルタンパク質(POI)に適用することができます。このプロトコルには、サンプルの自己蛍光を低減する手順、最大 20 個のサンプルを同時に調製して最小限のサンプル量を必要とするサンプルアレイ設計、抗体標識および固定条件の最適化が含まれています。リン酸化タンパク質の単一分子検出および定量のために、データ解析アルゴリズムが開発されています。

プロトコル

1. カバースリップの準備

注:このステップでは、ニトリル手袋、安全メガネまたはフェイスシールド、およびラボコートの二重層を含む個人用保護具(PPE)を着用する必要があります。

  1. ピラニアエッチングを行い、ガラスから有機物を除去します。
    警告: ピラニア溶液は、有機材料と接触すると腐食性があり反応性の高い強力な酸化剤です。有機破片との反応は発熱性であり、潜在的に爆発性である。したがって、手順は、サッシを下げた化学ヒュームフード内で実行する必要があります。パイレックスガラス製品は、ピラニア溶液を処理するために必要とされます。
    1. 化学ヒュームフード内のワークスペースを準備します。4Lガラスビーカー「反応」ビーカーの底に重なり合わずにカバースリップを配置し、反応ビーカーを温熱でホットプレートの上に置きます。ガラス製品を10分間温めます。反応ビーカーに500mLのddH2O近位に「廃棄物」1Lガラスビーカーを置く。
    2. 49mLの12N硫酸(H2SO4)をガラス血清学的ピペットで反応ビーカーにゆっくりと加える。廃棄する前に、廃ビーカーでピペットをすすいでください。
    3. 21mLの30%過酸化水素(H2O2)をガラス血清学的ピペットで反応ビーカーに滴下する。H2O2液滴を反応フラスコの底部全体に均等にゆっくりと分配し、ピラニアエッチング反応の局所的な急冷を防止する。廃棄する前に、廃ビーカーでピペットをすすいでください。
      警告: H 2 O 2 を必ず H2SO4 に添加し、その逆は絶対に行わないでください。
    4. ピラニアはカバースリップを30分間エッチングします。反応ビーカーの内容物を5分ごとに静かに攪拌する。
    5. ピラニア溶液を反応ビーカーに廃ビーカーの内容物を流し込んで急冷する。液体を反応ビーカーの壁の下にゆっくりと移し、飛沫を最小限に抑えます。反応ビーカーをホットプレートから取り外します。
    6. 反応がクエンチされ冷却されたら、反応ビーカーからエッチングされたカバースリップを取り除かずに、ピラニア溶液を廃ビーカーに注ぎ、中和する。
    7. ピラニア溶液を弱塩基を徐々に添加して中和する。例えば、過剰な質量20gの炭酸水素ナトリウム(NaHCO3)/100mLピラニア溶液を使用する。
      警告: ピラニア溶液を密閉された廃棄物容器に保管しないでください。溶液は廃棄前に常に中和する必要があります。中和反応は激しい気泡を生成し、弱塩基の漸進的な添加によって制御されなければ爆発性であり得る。
    8. 中和液をガラス製の攪拌棒で攪拌し、2時間反応させる。pHを>4に上げ、溶液を処分する。
    9. ピラニア溶液への弱塩基の添加の間に、エッチングされたカバースリップを反応ビーカーからガラス攪拌棒を有するブフナー漏斗に移し、ddH2Oを走らせて5分間すすいだ。
      メモ:すぐに次の手順に進むか、ピラニアエッチングされたカバースリップを密封されたガラス瓶またはペトリ皿にddH 2 Oで最大2週間保管してください(シールフィルムで包みます、 材料表を参照)。
  2. 以下の手順に従って、カバースリップを有機溶媒中でバス超音波処理します。
    1. カバースリップをガラスのコプリン瓶に入れ(材料表を参照)、メタノール(CH3OH)で覆います。蓋をシーリングフィルムで瓶に密封し、10分間バス超音波処理します。コプリン瓶からメタノールをガラス製の貯蔵瓶に慎重に注ぎます。
    2. コプリン瓶をアセトン(C3H6O)で満たし、蓋を密封し、10分間浴中超音波処理する。コプリンの瓶からアセトンをガラス製の貯蔵瓶に慎重に注ぎます。
      警告: メタノールは可燃性で、毒性が強いです。化学ヒュームフードで使用してください。アセトンは可燃性であり、刺激性である。したがって、ガラスで取り扱い、保管し、化学ヒュームフードで使用してください。有害廃棄物は、現地の規制やガイドラインに従って処分してください。
      注:メタノールとアセトンは、それぞれ最大5回まで再利用できます。
  3. シラン官能化のためにカバースリップ表面を活性化する。
    1. 1 M水酸化カリウム(KOH)を20分間浴中超音波処理する。コプリンジャーからKOHを50mLの円錐形チューブに慎重に注ぎ、再利用してください。
      警告: KOHは腐食性があり、刺激性があります。化学ヒュームフードに使用し、ガラスに保管しないでください。ポリプロピレンチューブに保管してください。有害廃棄物は、現地の規制やガイドラインに従って処分してください。
      注: KOH は最大 5 回まで再利用できます。
    2. ddH 2 Oで 2 回すすぎます。カバースリップから ddH2O をドリンし、ブンゼンバーナーの炎を振って各カバースリップを加熱し、表面の水分をすべて除去します。カバースリップを乾いたコプリンの瓶に入れます。
  4. カバースリップアミノシラン処理を実行します。
    1. 円錐フラスコ中で69.4 mLのメタノールと3.6 mLの酢酸(CH3COOH)を混合してアミノシラン溶液を調製する。720 μLのN-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン(アミノシラン)を加え、よく混ぜる( 材料表参照)。
      警告: 酢酸は可燃性で腐食性があります。ガラスピペットで取り扱い、ガラスに保管してください。化学ヒュームフード内の酢酸で作業します。アミノシランは、急性毒性吸入の危険性、増感剤、および刺激物である。それは水生生物に有害です。化学ヒュームフードで使用してください。化学物質は、地域の規制やガイドラインに従って有害廃棄物として処分してください。
      注:アミノシランは感光性であり、水中で急速に加水分解する。この試薬を用いたすべてのステップは、活性を保持するために最小限の光条件下で実行する必要があります。ボトルを窒素ガスでパージし、暗いデシケーターに保管する前にシールフィルムを塗布します。6〜9ヶ月ごとに交換してください。
    2. 直ちにアミノシラン溶液をコプリン瓶に加える。シーリングフィルムを覆って塗布し、光から保護し続けます。
    3. カバースリップをアミノシラン溶液中で室温(RT)の暗所で10分間インキュベートする。1分間入浴超音波処理し、その後さらに10分間インキュベートする。微量アミノシランとCH3COOHを含むCH3OH用に指定された廃容器にアミノシラン溶液を慎重に注ぎます。
    4. カバースリップをメタノールですすぎ、メタノール用に指定された廃液容器に溶液を注ぎます。
    5. カバースリップを ddH 2 O で 2 分間ずつ3回すすぎ、カバースリップを水切りし、余分な水分を軽くたたき、10 分間完全に風乾させます。
  5. カバースリップのアレイ調製/ビオチン-PEG機能化を実行します。
    1. 84.5 mgのNaHCO31 mLのddH2Oに溶解することによって、1 M NaHCO3(pH 8.5)作業ストックを調製する。終濃度が10 mM NaHCO3の場合、1 M NaHCO3をddH2Oに希釈する(1:100)。
    2. 疎水性バリアペン( 材料表を参照)で乾燥したアミノシラン処理カバースリップにグリッド配列を描き、インクが乾くのを待ちます。カバースリップに識別子を書いて、正しい向きをマークします。カバースリップを加湿したチャンバーに置きます。
      メモ: アレイは、約 4 mm x 4 mm の 16 ~ 20 個の正方形で構成する必要があります。
    3. ビオチン-PEG吉草酸スクシンイミジル(ビオチン-PEG)/mPEGスクシンイミジル吉草酸(mPEG)溶液を作るには、まず、冷凍庫からmPEGとビオチン-PEG( 材料表参照)を取り出し、RTに平衡化します。153mgのmPEGと3.9mgのビオチン-PEG(~1:39 biotin-PEG:mPEG)を1.5mLの微量遠心チューブに加え、10mM NaHCO3 を609μLに緩やかにピペッティングして再懸濁します。10,000 x g で遠心分離機で RT で 1 分間、気泡を除去します。
      注:pH 8.5緩衝液中の吉草酸スクシンイミジルの加水分解半減期は〜30分です。バッファーを mPEG に追加した後、以下のステップをできるだけ早く進めてください。このステップは非常に重要です。
    4. ビオチン-PEG/mPEG溶液を塗布して、カバースリップアレイ内の各正方形(通常は1平方あたり10~15μL)を完全に覆います。定義されたスペースに液体が溢れないようにしてください。カバースリップを暗闇の中の湿度室にRTで3〜4時間保管してください。
    5. カバースリップを大量の水で洗い流し、ddH2 Oで満たされた3x 250 mLのガラスビーカーにそれぞれ10秒間ずつ浸します。
    6. カバースリップからすべての水分を窒素ガスで追い払います。カバースリップを-20°Cでシールフィルムで包んだ窒素充填50mL円錐管に背中合わせに保管する。
      メモ: すぐに手順 2 に進むか、カバースリップを -20 °C で最大 1 週間保管してから使用してください。

2. SiMPull溶解液の調製

警告: プロトコルの残りの手順に必要な PPE は、ニトリル手袋、安全メガネ、およびラボコートです。

注:溶解液は、EGFR-GFPを発現する接着CHO細胞から調製した。細胞を60 mm組織培養(TC60)ディッシュに一晩1213で播種した。CHO細胞は、10%ウシ胎児血清、1%L-グルタミン、1%ペニシリン-ストレプトマイシン、および500ng/mLのジェネチシンを添加したDMEMで培養した( 材料表参照)。他の接着細胞株または浮遊細胞も使用することができる。

  1. 以下の手順に従ってセルをプレートします。
    1. 培養皿(細胞を含む)を1mLの1x PBSで洗浄する。1mLの1xトリプシンを加え、37°Cで5分間インキュベートして細胞を剥離する。ピペットを用いて、ディッシュから剥離した細胞を1.5mL遠沈管に移す。
    2. 10 μL のトリパンブルーを取り、別の遠沈管で 10 μL の細胞懸濁液と混合します。10 μL の細胞混合物を自動セルカウンターで使用して、製造元の指示に従って細胞を計数します ( 材料表を参照)。
    3. プレート8 x105 細胞をTC60シャーレで一晩。条件ごとに1皿ずつプレートします。
      注:本研究では、細胞は未処理であるか、またはステップ2.4.1に記載されるようにペルバナジン酸およびEGFで処理された。
  2. 細胞溶解液調製のために以下の溶液を調製する。
    1. 氷冷1x PBS(pH 7.4)を調製する。
    2. 溶解バッファー、プロテアーゼ/ホスファターゼ阻害剤(PPI)を添加した50 mM Tris-HCl(pH 7.2)および150 mM NaCl(在庫から1:100)に1%非イオン性、非変性洗剤( 材料表を参照)の溶液を調製します。チューブをナテーターの上に置き、バッファーを15分間混合します。調製した溶液を氷の上に保管してください。
    3. 終濃度が 135 mM NaCl、10 mM KCl、0.4 mM MgCl 2、1 mM CaCl2、10 mM HEPES (pH7.2)、20 mM グルコース、および 0.1% ウシ血清アルブミン (BSA) になるようにタイロード緩衝液を調製します ( 材料表を参照)。溶液を37°Cに温める。
  3. リン酸化のための陽性対照を調製する - 1mMペルバナジン酸処理。
    メモ: この手順はオプションです。ペルバンデートは、タンパク質チロシンホスファターゼ16の阻害剤であるバナジン酸のペルオキシド型である。ホスファターゼ活性を阻害することによってタンパク質脱リン酸化を防止することは、高度にリン酸化された試料をもたらす。
    1. 活性化オルトバナジン酸ナトリウム(Na3VO4)の200mMストックを調製する
      1. 100 mL 溶液を調製するには、90 mL の ddH2Oに 3.89 g のNa3VO4 (材料表を参照) を加え、攪拌しながら溶解します。HClまたはNaOHを滴下してpHを10に調整する。HCl を追加すると、ソリューションが黄色に変わります。
      2. ddH2Oで容量を 100 mL にし、溶液を電子レンジで加熱して沸騰させます。沸騰後、溶液は無色になります。
      3. 溶液をRTに冷却し、pHを10に再調整します。沸騰、冷却、pH調整をさらに2〜4回繰り返し、pHが10で安定します。アリコートし、-20°Cで保存する。
    2. 20.4 μL の3% H2 O2 100 μL の200mM Na3 VO4 および 546.8 μL の ddH 2 O (等モル濃度の H2O2および活性化 Na3VO4) を混合して、30mM ペルバナジン酸 (PV) のストックを調製します。RTで暗闇の中で15分間インキュベートする。
    3. タイロードのバッファーに 1 mM PV を用意します。10 mL 溶液の場合、0.33 mL の 30 mM PV ストックを 9.67 mL の 37 °C のタイロード緩衝液に加えます。すぐに細胞を治療してください。
    4. 3 mLのタイロード緩衝液で細胞を1回洗浄します。3 mLの1 mM PVをタイロード緩衝液に細胞に加え、37°Cで15分間インキュベートする。
  4. リガンド刺激を行う。
    1. 適切な濃度、時間、および温度を使用して、目的のリガンドで細胞を刺激します。最大のEGFR刺激を得るには、1 mLの50 nM上皮成長因子(EGF、 材料表を参照)+ 1 mMのPVをタイロードのバッファーに入れて37°Cで5分間インキュベートします。
  5. 細胞溶解を行う。
    1. 所望の細胞処理の後、皿を氷の上に置き、氷冷1x PBSで洗浄する。ピペットを使用してPBSの全容量を完全に取り出します。
    2. 180 μL の溶解バッファー (ステップ 2.2.2) をプレートに加えます。セルスクレーパーを使用してプレートの周りにバッファーを引っ張り、セルを完全に覆います。培養表面全体にセルスクレーパーでしっかりと一貫した圧力をかけ、細胞を完全に溶解します。
      注:溶解バッファーの量は、高いタンパク質濃度を確保するために最小限に抑える必要があります。
    3. 溶解した細胞をピペットでピペットし、1.5 mLチューブに移します。チューブを氷の上に30分間保管してください。溶解物を5分ごとに渦巻きます。
      注:POIが複数のサブユニットで構成されている場合、または解離に敏感な場合は、溶解物を渦巻き込まないでください。
    4. 溶解した細胞を16,000 x g で4°Cで20分間遠心分離する。 上清をピペットを使用して新しい1.5 mLチューブに移します。これは、総タンパク質溶解物を含有する。
    5. 10 μL の溶解液を予約し、それを 90 μL の溶解バッファーに希釈して、ビシンコニン比色アッセイ (BCA) 分析17.残りの総タンパク質ライセートを-80°Cで保存する。
    6. BCA分析を用いて溶解物総タンパク質濃度を決定する( 材料表を参照)。
      注:総タンパク質溶解物は、実験日に調製し、新鮮に使用するか、-80°Cで使い捨てアリコートとして最大12週間保存することができます。凍結/解凍しないでください。

3. ビオチン化抗体によるアレイの機能化

  1. 以下の解決策を準備します。
    1. T50バッファーは、10 mM トリス塩酸 (pH 8.0) および 50 mM NaCl の溶液です。このソリューションはRTで1ヶ月間安定しています。
    2. T50-BSA は、T50 バッファーに 0.1 mg/mL の BSA を補充します。調製した溶液を氷の上に保管してください。
    3. 10 mg/mL の水素化ホウ素ナトリウム (NaBH4) を 1x PBS 中に入れます。ご使用直前にご用意ください。
    4. 0.2 mg/mL のニュートラアビジン ( 材料表を参照) T50 バッファー中。
      警告: NaBH4 は還元剤であり、可燃性です。使用後は必ず容器を窒素ガスでパージし、デシケーターに保管してください。
  2. ビオチン化抗体でアレイを機能化します。
    1. PEG-ビオチン官能化アレイを冷凍庫から取り出し、開封前に円錐管をRTに平衡化します。アレイを上向きにしたカバースリップを、100 mm組織培養(TC100)皿に並ぶシーリングフィルムの上に置きます。
      メモ: オーバーヘッド照明は最小限に抑えてください。すべての溶液は、疎水性アレイによって定義される正方形上に「ビーズアップ」する必要があります。適切な量の溶液を加えて、各正方形(通常は10〜15μL)を完全に覆い、液体が定義された空間をオーバーフローさせないようにします。液体を迅速に除去するには、真空フラスコに取り付けられた社内の真空ラインを使用して廃棄物を回収します。NaBH4を 1時間脱気してから、化学ヒュームフードでチューブを開いたままにして廃棄します。NaBH4 処理は、バックグラウンドの自己蛍光を減少させ、それによって偽陽性の単一分子検出を減少させるために必要である。
    2. アレイの各正方形を、1x PBS中の10mg/mLのNaBH4 でRTで4分間処理し、PBSで3回洗浄する。
    3. 各正方形を0.2mg / mLのNeutrAvidinをT50で5分間インキュベートします。T50-BSAで3回洗ってください。
      注:ニュートラアビジンはPEG-ビオチンに結合し、ビオチン化抗体121315の結合部位を提供する。
    4. T50-BSA中の2μg/mLのビオチン化POI特異的抗体と共に各正方形を10分間インキュベートする。T50-BSAで3回洗ってください。
      注:本プロトコルは、ビオチン化抗EGFR IgG( 材料表を参照)を使用してEGFR-GFPを捕捉する。

4. 全細胞溶解物からのPOIのSiMPull

メモ: 機能化 SiMPull アレイの TC100 ディッシュを氷の上に置き、残りの SiMPull 調製を行います。このステップは、総タンパク質溶解物からのPOIのプルダウンです。溶解液は解凍後に再利用してはならない。

  1. 以下の解決策を準備します。
    1. 1x PBS中に4%パラホルムアルデヒド(PFA)/0.1%グルタルアルデヒド(GA)を調製する。
      注意: PFA および GA は有毒な化学物質固定剤であり、発がん物質の可能性があります。PPEを着用してください。化学物質は、地域の規制やガイドラインに従って有害廃棄物として処分してください。
    2. 10 mM トリス塩酸、pH 7.4 を調製します。
  2. 溶解液を穏やかに上下にピペッティングして解凍し、混合する。氷の上にとどまる。
  3. 溶解液 1 μL を氷冷 T50-BSA/PPI 100 μL に希釈します。
    注:必要に応じて、アレイに希釈の範囲を適用して、全タンパク質溶解物の適切な希釈倍率を決定します。アレイ領域あたりのSiMPull受容体の最適密度は0.04〜0.08/μm2である。溶解液希釈液は、ステップ6(データ分析)で評価することができる。
  4. アレイ上の溶解物を10分間インキュベートする。その後、氷冷T50-BSA / PPIで4回洗ってください。
  5. AF647結合抗ホスホチロシン抗体( 材料表を参照)を氷冷T50-BSA/PPIで希釈し、アレイ上で1時間インキュベートする。
    注:本プロトコールでは、EGFR-GFPのリン酸化集団を同定するために、パン抗pTyr(PY99)-AF647 IgGが使用される。直接標識抗体を使用すると、二次抗体の必要性がなくなり、標識オプションが増加し、結果の一貫性が向上します。蛍光標識抗体は、市販の供給源から得ることができる。市販されていない場合、抗体は標準的なバイオコンジュゲーション技術を使用してカスタム標識することができ、市販のバイオコンジュゲーションキットが利用可能である。蛍光標識抗体の各バッチは、SiMPullを実行して用量曲線を測定し、飽和点を見つけることによって、最適な標識条件について試験する必要があります。
  6. 氷冷T50-BSAで合計6〜8分間6回洗う。
  7. 氷冷1x PBSで2回洗ってください。
  8. 抗体の解離を防ぐために、アレイを4% PFA/0.1% GA溶液と共に10分間インキュベートします。
  9. 固定液を不活性化するために、10 mM Tris-HCl、pH 7.4 / PBSでそれぞれ5分間2回洗浄します。
    注:複数の抗体を用いた実験(例えば、複数のホスホチロシン部位を検出する)については、ステップ4.5~4.9を繰り返します。2つの抗体間の立体障害の決定については、ステップ6.2.9を参照してください。

5. 画像取得

メモ:1分子画像取得は、150倍のTIRF対物レンズと、emCCDカメラの特定の象限内の各スペクトルチャネルをキャプチャするイメージスプリッタを使用して実行されます( 材料表を参照)。キャリブレーション画像は、まずチャンネル登録とカメラゲインキャリブレーションを可能にするために取得され、3 ± 1 μmの穴内距離に200 x 20アレイの200 ± 50 nmの穴を含むナノパターン化されたチャネルアライメントグリッド(ナノグリッド)×用します。

  1. 以下の手順でチャンネル登録を実行します。
    メモ: エミッタの共局在化を正しく計算するには、正確なチャネル登録が必要です。このステップは非常に重要です。
    1. オイルパージェクトを清掃し、オブジェクティビティにオイルを一滴堆積させます。ナノグリッドをステージ上に置き、イメージングします。透過白色光を使用して、グリッドパターンに焦点を合わせます。
      注:ナノグリッドを含む画像は、ナノグリッドを通過し、すべてのスペクトルチャネルで検出される透過光を使用して取得されます。あるいは、各チャネルで検出された蛍光を発する多蛍光ビーズを使用することができる。画像取得は、各顕微鏡設定に従って最適化する必要があります。
    2. グリッドの一連の 20 個の画像を取得します。ピクセルが飽和していないことを確認します。画像シリーズを「基準」として保存します。
    3. ナノグリッドの焦点を合わせて、エアリーパターン18を作成する。ゲインキャリブレーション用に一連の20枚の画像を集録します。画像を「ゲイン」として保存します。
    4. すべての光がカメラに届くのをブロックして、カメラオフセット用の一連の20枚の画像を取得します。画像を「背景」として保存します。
  2. SiMPull画像を取得します。
    メモ:カバースリップアレイをイメージする前に、TrisソリューションをT50-BSAと交換し、アレイをRTに平衡化してください。
    1. オイルパージェクトを清掃し、ターゲットに追加のオイルを堆積させます。カバースリップアレイを顕微鏡ステージに固定します。
    2. 各蛍光色素分子の励起パワー、TIRF角度、カメラの統合時間を最適化します。目標は、サンプルのフォトブリーチングを最小限に抑えながら、最高の信号対ノイズを達成することです。将来の測定で一貫性を保つためにレーザー出力を記録します。
      注:本研究では、遠赤色チャネルに300ミリ秒、緑色チャネルに1秒の露光時間を使用しました。642 nmレーザーは約500 μWのレーザー出力で使用され、488 nmのレーザーは860 μWで使用され、チューブレンズの前に測定されました。
    3. 各サンプルの画像を集録します。最初に遠赤チャネルをイメージングし、続いて各低波長蛍光色素分子をイメージングして、フォトブリーチングを低減します。各サンプルには少量しか使用しないため、30~45分ごとにバッファーレベルを確認し、必要に応じて補充してください。

6. データ解析

  1. デモコードをダウンロードします。
    注: 提供されているデモ コードとサンプル データ セットは、完全なデータ分析ワークフロー (補足コーディング ファイル 1 ~ 4) を示しています。SiMPullMain.m にリストされているシステム要件は、 補足コーディング ファイル 1 に記載されています。
    1. 解凍 して、個人のドキュメント/MATLAB (MacOS/Linux) または Documents\MATLAB (Windows) ディレクトリに 保存 します。
      メモ: これにより、SiMPull_class、スマイト、サンプルデータ、サンプル分析出力の 4 つの新しいフォルダが生成されます。
    2. ReadMe_Setup.txtフォルダにある「SiMPull_class」ファイルを開きます。
    3. MATLAB および MATLAB ツールボックス: カーブフィッティングツールボックス、並列コンピューティングツールボックス、統計および機械学習ツールボックスをインストールします。
    4. ダウンロード手順に従ってDipImage19 をインストールします。
    5. ReadMe_setup.txt で説明したように、"smite" 単一分子分析パッケージをインストールします。
      注: "smite" は GitHub リポジトリで入手できます ( 資料表を参照)。
    6. フォルダにあるSiMPullMain.m SiMPull_class開き、ファイルをMATLABウィンドウにドラッグします。
    7. ディレクトリを...\MATLAB\サンプルデータ\に変更するには、[ フォルダの参照] アイコンをクリックし、フォルダを選択します。
  2. データ処理ステップの概要
    1. SiMPullMain.m を実行します - 各セクションの指示に従います。各セクションを個別に実行するには、そのセクションにカーソルを置き、「セクションを実行」アイコンをクリックします。
      メモ: このセクションでは、データ分析の一般的な手順について説明します。詳細な手順については、付属の SiMPullMain.m コードを参照してください。
    2. 「初期化」セクションを実行して、スペクトルチャンネルと画像サイズを定義するパスを設定します。
    3. 「カメラのゲインとオフセットの検索」セクションを実行して、ゲインデータセットと背景データセットを使用してカメラゲインをフォトンに変換します。
    4. 「チャンネル登録」セクションを実行して、画像登録に使用される局所加重平均変換を計算します。
    5. データの書式設定と管理を行います。「シーケンシャルチャンネルをクワッドイメージに結合する」セクションを実行します。「不良フレームの削除」を実行します。
    6. 「単一分子を適合させ、重複する分子を見つける」セクションを実行します。
      注: このセクションでは、複数の関数を実行して、各チャネル内の単一分子を局在化し、スペクトルチャネル間の共局在化イベントを決定します。
    7. 真のGFPフィットあたりの最小フォトン数を決定するには、「最小フォトンしきい値の最適化」を実行します。これは反復的なプロセスです。
      1. まず、smf を設定します。Thresholding_MinPhotons = [0, 0, 0] でセクションを実行します。プロンプトが表示されたら、「空白のデータ」ファイルを選択します。"CHO-EGFR-GFP" ファイルで繰り返します。
      2. 2 つのヒストグラムを比較して、適切な最小しきい値を選択します。smf を設定します。Thresholding_MinPhotons = [475, 0, 0] をクリックし、セクションを再実行します。
    8. 「FR信号のGFP適合率の正を計算する」セクションを実行して、バックグラウンドローカリゼーションを修正し、最終値を計算します。
    9. 実験の必要に応じて、オプション 1 (ステップ 6.2.10) またはオプション 2 (ステップ 6.2.11) を実行します。
    10. 選択肢1:参考文献15に記載されているように、リガンド結合のために原形質膜で利用可能な受容体の数を補正する。
      1. まず、表面受容体を飽和レベルの蛍光NHSエステル色素で標識する(NHS−AF647、 材料表参照)。次に、SiMPull実験を実行して、AF647と共局在化するGFP局在化の割合を決定します。
        注:これは、NHS標識に利用可能な受容体の割合および表面上の受容体の比率(SR)の推定値を提供する。
      2. NGFP = (NLOC - NBG)*SR(NGFP はGFP 局在化の補正数、NBG はバックグラウンド局在化数、NLOC は総局在化数)として、SR 補正を最終計算に適用します。
        注:この例では、ペルバナジン酸は膜透過性16 であり、したがって、ホスファターゼ阻害の作用は表面受容体に限定されないため、この補正は適用されない。
    11. オプション2:マルチサイトリン酸化測定では、2つの抗体を使用した場合の立体障害の可能性を考慮してください。
      注:立体障害は、抗体1単独(P1)と比較して、抗体2(P12)の存在下で抗体1のリン酸化受容体の観察された割合の減少を引き起こす可能性があります。
      1. SiMPullを使用してP1とP12を決定し、以前に公開された参考文献15に従って立体障害の補正係数を計算します。

結果

SiMPullプロセスを描いた漫画を 図1Aに示します。カバースリップは、ビオチン化抗EGFR抗体のアンカーとしてNeutrAvidinを使用して官能化され、全タンパク質溶解物からEGFR-GFPを捕捉します。非結合タンパク質を洗い流した後、リン酸化受容体を抗ホスホチロシン(anti-PY)抗体で標識する15図1B は疎水性アレイの画像を示しており、複?...

ディスカッション

ここで説明するプロトコルは、単一タンパク質レベルでの受容体リン酸化の定量的測定を可能にするように最適化されました。SiMPullプロトコルに対するいくつかの単純だが重要な修正が開発され、NaBH4 処理による自己蛍光の低減や抗体解離を防ぐためのサンプルの後固定など、ホスホチロシン検出の測定の信頼性が向上しました。緑色チャネルマスクを使用して、抗PY抗体との共局?...

開示事項

著者らには開示するものは何もありません。

謝辞

この研究は、国立衛生研究所R35GM126934、R01AI153617、およびR01CA248166によってDSLに支援されました。EMBはASERT-IRACDAプログラム(NIH K12GM088021)によって、JARはUNM MARCプログラム(NIH 2T34GM008751-20)によってサポートされました。我々は、NIH P30CA118100が支援するニューメキシコ大学総合がんセンター蛍光顕微鏡共有リソースの使用に感謝の意を表している。私たちは、SiMPullのオリジナルの開発がこの作品に影響を与えたAnkur Jain博士とTaekijip Ha博士に感謝したいと思います。
ES-Cの現在演説:免疫力学グループ、統合癌免疫学研究室、癌研究センター、国立癌研究所、ベセスダ

資料

NameCompanyCatalog NumberComments
1.5 mL microcentrifuge tubesMTC BioC2000
10 mM Tris-HCl pH 7.4
10 mM Tris-HCl pH 8.0/ 50 mM NaClT50 Buffer
100 mm Tissue Culture dishCELLTREAT229620Storage of piranha etched glass/arrays
15 mL conical tube
16% Paraformaldehyde Aqueous SolutionElectron Microscopy Sciences15710Hazardous
50 mL conical tubeFunctionalized Glass storage/ KOH reuse
50 mM Tris-HCl pH 7.2/150 mM NaClLysis Buffer Component
60 mm Tissue Culture dishCorning430166
8% Glutaraldehyde Aqueous SolutionElectron Microscopy Sciences16020Hazardous
Acetone (C3H6O)Millipore Sigma270725Hazardous
Alexa Fluor 647 NHS EsterThermo Fisher ScientificA-20006
Animal-Free Recombinant Human EGFPeprotechAF-100-15
Anti-Human EGFR (External Domain) – BiotinLeinco Technologies, IncE101
Anti-p-Tyr Antibody (PY99) Alexa Fluor 647Santa Cruz Biotechnologysc-7020 AF647
Bath-sonicatorBranson1200
BCA Protein Assay KitPierce23227
Biotin-PEGLaysan BioBiotin-PEG-SVA, MW 5,000
Bovine serum albuminGold BiotechnologyA-420-1Tyrode's Buffer Component
Buchner funnel
Bunsen burner
Calcium Chloride (CaCl2)Millipore SigmaC4901Tyrode's Buffer Component
Cell ScraperBioworld30900017-1
Conical Filtering FlaskFisher ScientificS15464
Coplin JarWHEATON900470
Countess II Automated Cell CounterThermo Fisher ScientificAMQAX1000
Coverslips 24 x 60 #1.5Electron Microscopy Sciences63793
DipImagehttps://diplib.org/
DMEMCaisson LabsDML19-500
emCCD cameraAndor iXon
Fetal Bovine Serum, OptimaBio-TechneS12450HHeat Inactivated
Fusion 360 softwareAutodesk
Geneticin G418 DisulfateCaisson LabsG030-5GM
Glacial Acetic Acid (CH3COOH)JT BakerJTB-9526-01Hazardous
Glass serological pipettes
Glass Stir Rod
Glucose (D-(+)-Glucose)Millipore SigmaD9434Tyrode's Buffer Component
Halt Phosphotase and Protease Inhibitor Cocktail (100X)Thermo Fisher Scientific78446Lysis Buffer Component
HEPESMillipore SigmaH3375Tyrode's Buffer Component
Hydrochloric Acid (HCl)VWRBDH7204-1Hazardous
Hydrogen Peroxide (H2O2) (3%)HX0645
Hydrogen Peroxide (H2O2) (30%)EMD MilliporeHX0635-2
Ice
IGEPAL CA-630 (NP-40)Sigma AldrichI8896Lysis Buffer Component
ImmEdge Hydrophobic Barrier PenVector LaboratoriesH-4000
Immersol 518F immersion oilZeiss444960-0000-000
in-house vacuum line
L-glutamineThermo Fisher Scientific25030-164
Magnessium Chloride Hexahydrate (MgCl2-6H2O)MPBio2191421Tyrode's Buffer Component
MatlabMathworksCurve Fitting Toolbox, Parallel Computing Toolbox, and Statistics and Machine Learning toolbox
Methanol (CH3OH)IBIS ScientificMX0486-1Hazardous
Milli-Q water
Mix-n-Stain CF Dye Antibody Labeling KitsBiotium92245Suggested conjugation kit
mPEGLaysan BiomPEG-succinimidyl valerate, MW 5,000
N-(2-aminoethyl)-3-aminopropyltrimethoxysilaneUCT United ChemicalA0700Hazardous
NanogridMiraloma Tech
NeutrAvidin Biotin Binding ProteinThermo Fisher Scientific31000
Nitrogen (compressed gas)
NVIDIA GPU with CUDALook for compatibility at https://www.mathworks.com/help/parallel-computing/gpu-support-by-release.html
Olympus iX71 MicroscopeOlympus
Parafilm M Sealing FilmThe Lab DepotHS234526C
PBS pH 7.4Caisson LabsPBL06
PC-200 Analog Hot PlateCorning6795-200
Penicillin-Streptomycin (10,000 U/mL)Thermo Fisher Scientific15140-163
Phospho-EGF Receptor (Tyr1068) (1H12) Mouse mAbCell Signaling Technology2236BF
Potassium Chloride (KCl)Millipore Sigma529552Tyrode's Buffer Component
Potassium Hydroxide (KOH)Millipore Sigma1050330500Hazardous
Premium PLA Filament, 1.75 mm diameterRaise 3DPMS:2035U/RAL:3028Printing temperature range: 205-235 °C
Pro2 3D printerRaise 3D
Pyrex 1 L beaker
PYREX 100 mL storage bottlesCorning1395-100CH3OH/C3H6O reuse
Pyrex 250 mL beakers
Pyrex 4 L beaker
Quad-view Image SplitterPhotometricsModel QV2
Refrigerated centrifugeEppendorfEP-5415R
RevCount Cell Counters, EVE Cell Counting SlidesVWR10027-446
Semrock emission filters: blue (445/45 nm), green (525/45 nm), red (600/37 nm), far-red (685/40 nm)SemrockLF405/488/561/635-4X4M-B-000
Serological pipette controller
Serological Pipettes
smite single molecule analysis packagehttps://github.com/LidkeLab/smite.git
Sodium Bicarbonate (NaHCO3)Sigma AldrichS6014Hazardous
Sodium Borohydride (NaBH4)Millipore Sigma452874Tyrode's Buffer Component
Sodium Chloride (NaCl)Millipore SigmaS9625Activate by successive heat and pH cycling
Sodium HydroxideVWRBDH3247-1
Sodium Orthovanadate (Na3VO4)Millipore SigmaS6508Hazardous
Sulfuric Acid (H2SO4)Millipore Sigma258105Hazardous
TetraSpeck MicrospheresThermo Fisher ScientificT7279multi-fluorescent beads
Tris (Trizma) baseMillipore SigmaT1503
Trypan blue stain, 0.4%Thermo Fisher Scientific15250061
Trypsin-EDTA 0.05%Thermo Fisher Scientific25300120

参考文献

  1. Lemmon, M. A., Schlessinger, J. Cell Signaling by Receptor Tyrosine Kinases. Cell. 141 (7), 1117-1134 (2010).
  2. Seet, B. T., Dikic, I., Zhou, M. M., Pawson, T. Reading protein modifications with interaction domains. Nature Reviews Molecular Cell Biology. 7 (7), 473-483 (2006).
  3. Coba, M. P., et al. Neurotransmitters drive combinatorial multistate postsynaptic density networks. Science Signaling. 2 (68), (2009).
  4. Gibson, S. K., Parkes, J. H., Liebman, P. A. Phosphorylation modulates the affinity of light-activated rhodopsin for g protein and arrestin. Biochemistry. 39 (19), 5738-5749 (2000).
  5. Stites, E. C., et al. Use of mechanistic models to integrate and analyze multiple proteomic datasets. Biophysical Journal. 108 (7), 1819-1829 (2015).
  6. Hause, R. J., et al. Comprehensive binary interaction mapping of SH2 domains via fluorescence polarization reveals novel functional diversification of ErbB receptors. PLOS ONE. 7 (9), 44471 (2012).
  7. Lau, E. K., et al. Quantitative encoding of the effect of a partial agonist on individual opioid receptors by multisite phosphorylation and threshold detection. Science Signaling. 4 (185), (2011).
  8. Mishra, M., Tiwari, S., Gomes, A. V. Protein purification and analysis: next generation Western blotting techniques. Expert Review of Proteomics. 14 (11), 1037-1053 (2017).
  9. Brunner, A. M., et al. Benchmarking multiple fragmentation methods on an orbitrap fusion for top-down phospho-proteoform characterization. Analytical Chemistry. 87 (8), 4152-4158 (2015).
  10. Swaney, D. L., Wenger, C. D., Coon, J. J. Value of using multiple proteases for large-scale mass spectrometry-based proteomics. Journal of Proteome Research. 9 (3), 1323-1329 (2010).
  11. Curran, T. G., Zhang, Y., Ma, D. J., Sarkaria, J. N., White, F. M. MARQUIS: A multiplex method for absolute quantification of peptides and posttranslational modifications. Nature Communications. 6 (1), 1-11 (2015).
  12. Jain, A., et al. Probing cellular protein complexes using single-molecule pull-down. Nature. 473 (7348), 484-488 (2011).
  13. Jain, A., Liu, R., Xiang, Y. K., Ha, T. Single-molecule pull-down for studying protein interactions. Nature Protocols. 7 (3), 445-452 (2012).
  14. Kim, K. L., et al. Pairwise detection of site-specific receptor phosphorylations using single-molecule blotting. Nature Communications. 7 (1), 1-10 (2016).
  15. Salazar-Cavazos, E., et al. Multisite EGFR phosphorylation is regulated by adaptor protein abundances and dimer lifetimes. Molecular Biology of the Cell. 31 (7), 695 (2020).
  16. Huyer, G., et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. Journal of Biological Chemistry. 272 (2), 843-851 (1997).
  17. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Analytical Biochemistry. 150 (1), 76-85 (1985).
  18. Keller, H. E. Objective lenses for confocal microscopy. Handbook of Biological Confocal Microscopy. , 145-161 (2006).
  19. Hendriks, C. L. L., van Vliet, L. J., Rieger, B., van Kempen, G. M. P., van Ginkel, M. . Dipimage: a scientific image processing toolbox for MATLAB. , (1999).
  20. fitgeotrans: Fit geometric transformation to control point pairs. The MathWorks Inc Available from: https://www.mathworks.com/images/ref/fitgeotrans.html (2013)
  21. Raghavachari, N., Bao, Y. P., Li, G., Xie, X., Müller, U. R. Reduction of autofluorescence on DNA microarrays and slide surfaces by treatment with sodium borohydride. Analytical Biochemistry. 312 (2), 101-105 (2003).
  22. Wang, X., Park, S., Zeng, L., Jain, A., Ha, T. Toward single-cell single-molecule pull-down. Biophysical Journal. 115 (2), 283-288 (2018).
  23. Chandradoss, S. D., et al. Surface passivation for single-molecule protein studies. Journal of Visualized Experiments. (86), e50549 (2014).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

184

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved