Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The present protocol describes sample preparation and data analysis to quantify protein phosphorylation using an improved single-molecule pull-down (SiMPull) assay.

Abstract

Phosphorylation is a necessary posttranslational modification that regulates protein function and directs cell signaling outcomes. Current methods to measure protein phosphorylation cannot preserve the heterogeneity in phosphorylation across individual proteins. The single-molecule pull-down (SiMPull) assay was developed to investigate the composition of macromolecular complexes via immunoprecipitation of proteins on a glass coverslip followed by single-molecule imaging. The current technique is an adaptation of SiMPull that provides robust quantification of the phosphorylation state of full-length membrane receptors at the single-molecule level. Imaging thousands of individual receptors in this way allows for quantifying protein phosphorylation patterns. The present protocol details the optimized SiMPull procedure, from sample preparation to imaging. Optimization of glass preparation and antibody fixation protocols further enhances data quality. The current protocol provides code for the single-molecule data analysis that calculates the fraction of receptors phosphorylated within a sample. While this work focuses on phosphorylation of the epidermal growth factor receptor (EGFR), the protocol can be generalized to other membrane receptors and cytosolic signaling molecules.

Introduction

Membrane-associated signaling is tuned by a combination of ligand-induced membrane receptor activation and recruitment of downstream accessory proteins that propagate the signal. Phosphorylation of key tyrosines in receptor cytoplasmic tails is critical to initiating the formation of signaling complexes, or signalosomes1,2. Therefore, an important question in biology is how phosphorylation patterns are created and maintained to recruit signaling partners and dictate cellular outcomes. This includes understanding the heterogeneity of receptor phosphorylation, both in abundance and in the specific phosphotyrosin....

Protocol

1. Coverslip preparation

NOTE: For this step, one needs to wear personal protective equipment (PPE), which includes a double layer of nitrile gloves, safety glasses or face shield, and a lab coat.

  1. Perform piranha etching to remove organic debris from the glass.
    CAUTION: Piranha solution is a strong oxidizing agent that is corrosive and highly reactive when in contact with organic materials. Reaction with organic debris is exothermic and potentially explosive.......

Representative Results

A cartoon depicting the SiMPull process is shown in Figure 1A. Coverslips are functionalized using NeutrAvidin as an anchor for biotinylated anti-EGFR antibodies to capture EGFR-GFP from total protein lysates. After washing away unbound protein, the phosphorylated receptors are labeled with an anti-phosphotyrosine (anti-PY) antibody15. Figure 1B shows an image of the hydrophobic array, where multiple samples can be prepared and imaged on .......

Discussion

The protocol described here was optimized to enable quantitative measurements of receptor phosphorylation at the single protein level. Several straightforward but important modifications to the SiMPull protocol were developed that improved the reliability of the measurement for phospho-tyrosine detection, including reduction of autofluorescence with NaBH4 treatment and postfixing of the sample to prevent antibody dissociation. Using the green channel mask to identify receptor locations for calculation of coloc.......

Acknowledgements

This work was supported by the National Institutes of Health R35GM126934, R01AI153617, and R01CA248166 to DSL. EMB was supported through the ASERT-IRACDA program (NIH K12GM088021) and JAR by the UNM MARC program (NIH 2T34GM008751-20). We gratefully acknowledge using the University of New Mexico Comprehensive Cancer Center fluorescence microscopy shared resource, supported by NIH P30CA118100. We want to acknowledge Drs. Ankur Jain and Taekijip Ha, whose original development of SiMPull inspired this work.
ES-C present address: Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda

....

Materials

NameCompanyCatalog NumberComments
1.5 mL microcentrifuge tubesMTC BioC2000
10 mM Tris-HCl pH 7.4
10 mM Tris-HCl pH 8.0/ 50 mM NaClT50 Buffer
100 mm Tissue Culture dishCELLTREAT229620Storage of piranha etched glass/arrays
15 mL conical tube
16% Paraformaldehyde Aqueous SolutionElectron Microscopy Sciences15710Hazardous
50 mL conical tubeFunctionalized Glass storage/ KOH reuse
50 mM Tris-HCl pH 7.2/150 mM NaClLysis Buffer Component
60 mm Tissue Culture dishCorning430166
8% Glutaraldehyde Aqueous SolutionElectron Microscopy Sciences16020Hazardous
Acetone (C3H6O)Millipore Sigma270725Hazardous
Alexa Fluor 647 NHS EsterThermo Fisher ScientificA-20006
Animal-Free Recombinant Human EGFPeprotechAF-100-15
Anti-Human EGFR (External Domain) – BiotinLeinco Technologies, IncE101
Anti-p-Tyr Antibody (PY99) Alexa Fluor 647Santa Cruz Biotechnologysc-7020 AF647
Bath-sonicatorBranson1200
BCA Protein Assay KitPierce23227
Biotin-PEGLaysan BioBiotin-PEG-SVA, MW 5,000
Bovine serum albuminGold BiotechnologyA-420-1Tyrode's Buffer Component
Buchner funnel
Bunsen burner
Calcium Chloride (CaCl2)Millipore SigmaC4901Tyrode's Buffer Component
Cell ScraperBioworld30900017-1
Conical Filtering FlaskFisher ScientificS15464
Coplin JarWHEATON900470
Countess II Automated Cell CounterThermo Fisher ScientificAMQAX1000
Coverslips 24 x 60 #1.5Electron Microscopy Sciences63793
DipImagehttps://diplib.org/
DMEMCaisson LabsDML19-500
emCCD cameraAndor iXon
Fetal Bovine Serum, OptimaBio-TechneS12450HHeat Inactivated
Fusion 360 softwareAutodesk
Geneticin G418 DisulfateCaisson LabsG030-5GM
Glacial Acetic Acid (CH3COOH)JT BakerJTB-9526-01Hazardous
Glass serological pipettes
Glass Stir Rod
Glucose (D-(+)-Glucose)Millipore SigmaD9434Tyrode's Buffer Component
Halt Phosphotase and Protease Inhibitor Cocktail (100X)Thermo Fisher Scientific78446Lysis Buffer Component
HEPESMillipore SigmaH3375Tyrode's Buffer Component
Hydrochloric Acid (HCl)VWRBDH7204-1Hazardous
Hydrogen Peroxide (H2O2) (3%)HX0645
Hydrogen Peroxide (H2O2) (30%)EMD MilliporeHX0635-2
Ice
IGEPAL CA-630 (NP-40)Sigma AldrichI8896Lysis Buffer Component
ImmEdge Hydrophobic Barrier PenVector LaboratoriesH-4000
Immersol 518F immersion oilZeiss444960-0000-000
in-house vacuum line
L-glutamineThermo Fisher Scientific25030-164
Magnessium Chloride Hexahydrate (MgCl2-6H2O)MPBio2191421Tyrode's Buffer Component
MatlabMathworksCurve Fitting Toolbox, Parallel Computing Toolbox, and Statistics and Machine Learning toolbox
Methanol (CH3OH)IBIS ScientificMX0486-1Hazardous
Milli-Q water
Mix-n-Stain CF Dye Antibody Labeling KitsBiotium92245Suggested conjugation kit
mPEGLaysan BiomPEG-succinimidyl valerate, MW 5,000
N-(2-aminoethyl)-3-aminopropyltrimethoxysilaneUCT United ChemicalA0700Hazardous
NanogridMiraloma Tech
NeutrAvidin Biotin Binding ProteinThermo Fisher Scientific31000
Nitrogen (compressed gas)
NVIDIA GPU with CUDALook for compatibility at https://www.mathworks.com/help/parallel-computing/gpu-support-by-release.html
Olympus iX71 MicroscopeOlympus
Parafilm M Sealing FilmThe Lab DepotHS234526C
PBS pH 7.4Caisson LabsPBL06
PC-200 Analog Hot PlateCorning6795-200
Penicillin-Streptomycin (10,000 U/mL)Thermo Fisher Scientific15140-163
Phospho-EGF Receptor (Tyr1068) (1H12) Mouse mAbCell Signaling Technology2236BF
Potassium Chloride (KCl)Millipore Sigma529552Tyrode's Buffer Component
Potassium Hydroxide (KOH)Millipore Sigma1050330500Hazardous
Premium PLA Filament, 1.75 mm diameterRaise 3DPMS:2035U/RAL:3028Printing temperature range: 205-235 °C
Pro2 3D printerRaise 3D
Pyrex 1 L beaker
PYREX 100 mL storage bottlesCorning1395-100CH3OH/C3H6O reuse
Pyrex 250 mL beakers
Pyrex 4 L beaker
Quad-view Image SplitterPhotometricsModel QV2
Refrigerated centrifugeEppendorfEP-5415R
RevCount Cell Counters, EVE Cell Counting SlidesVWR10027-446
Semrock emission filters: blue (445/45 nm), green (525/45 nm), red (600/37 nm), far-red (685/40 nm)SemrockLF405/488/561/635-4X4M-B-000
Serological pipette controller
Serological Pipettes
smite single molecule analysis packagehttps://github.com/LidkeLab/smite.git
Sodium Bicarbonate (NaHCO3)Sigma AldrichS6014Hazardous
Sodium Borohydride (NaBH4)Millipore Sigma452874Tyrode's Buffer Component
Sodium Chloride (NaCl)Millipore SigmaS9625Activate by successive heat and pH cycling
Sodium HydroxideVWRBDH3247-1
Sodium Orthovanadate (Na3VO4)Millipore SigmaS6508Hazardous
Sulfuric Acid (H2SO4)Millipore Sigma258105Hazardous
TetraSpeck MicrospheresThermo Fisher ScientificT7279multi-fluorescent beads
Tris (Trizma) baseMillipore SigmaT1503
Trypan blue stain, 0.4%Thermo Fisher Scientific15250061
Trypsin-EDTA 0.05%Thermo Fisher Scientific25300120

References

  1. Lemmon, M. A., Schlessinger, J. Cell Signaling by Receptor Tyrosine Kinases. Cell. 141 (7), 1117-1134 (2010).
  2. Seet, B. T., Dikic, I., Zhou, M. M., Pawson, T. Reading protein modifications with interaction domains. Natur....

Explore More Articles

AI powered Protein Phosphorylation QuantificationSingle molecule Pull down AssaySiMPull ProtocolAntibody LabelingAutofluorescence ReductionSingle molecule AnalysisPhosphorylation Status Of Individual ProteinsAlternative To Western Blotting And Mass Spectrometry

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved