サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

腹膜表面に転移したヒトがんの産生、培養、可視化のためのプロトコルについて説明します。切除した腫瘍標本をビブラトームを使用して切断し、透過性インサートで培養して酸素化と生存率を高めた後、共焦点顕微鏡とフローサイトメトリーを使用したイメージングとダウンストリーム分析を行います。

要約

腹膜偽粘液腫(PMP)は、粘液性原発腫瘍の播種とその結果としての腹腔内のムチン分泌腫瘍細胞の蓄積に起因するまれな状態です。PMPは、虫垂、卵巣、結腸直腸などのさまざまな種類の癌から発生する可能性がありますが、虫垂腫瘍が群を抜いて最も一般的な病因です。PMPは、その(1)希少性、(2)限られたマウスモデル、および(3)粘液性の無細胞組織学のために研究が困難です。ここで紹介する方法は、腫瘍微小環境(TME)が無傷のままである調製物において、患者由来の ex vivo 器官型スライスを使用して、これらの腫瘍タイプのリアルタイムの視覚化および調査を可能にする。このプロトコルでは、まず、ビブラトームを使用した腫瘍スライスの調製とその後の長期培養について説明します。次に、腫瘍スライスの共焦点イメージングと、生存率、カルシウムイメージング、および局所増殖の機能的読み出しを監視する方法について説明します。要するに、スライスにはイメージング色素が装填され、共焦点顕微鏡に取り付けることができるイメージングチャンバーに配置されます。タイムラプスビデオと共焦点画像を使用して、初期の生存率と細胞機能を評価します。この手順では、TMEにおける翻訳細胞運動、およびパラクリンシグナル伝達相互作用についても調べます。最後に、フローサイトメトリー分析に使用する腫瘍スライスの解離プロトコルについて説明します。定量的フローサイトメトリー分析は、ベンチからベッドサイドまでの治療試験に使用でき、免疫ランドスケープと上皮細胞含有量内で発生する変化を判断できます。

概要

腹膜偽粘液腫(PMP)はまれな症候群で、発生率は年間100万人あたり1人です1。ほとんどのPMP症例は虫垂腫瘍からの転移によって引き起こされます。マウスには人間のような虫垂がないことを考えると、このタイプの癌のモデル化は依然として非常に困難です。原発性疾患は外科的切除によって治癒することが多いが、転移性疾患の治療選択肢は限られている。したがって、この新しい有機型スライスモデルを開発する理論的根拠は、PMPの病理生物学を研究することです。現在まで、永久培養できる虫垂オルガノイドモデルはありません。しかし、最近のモデルは、治療薬の薬理学的試験および免疫療法に有用であることが示された2。そのため、脳、乳がん、膵臓がん、肺がん、卵巣がんなど、他の種類のヒトがんで使用されている有機型スライス培養システムを適応させました3,4,5,6

虫垂腫瘍に加えて、PMPは時折、卵巣癌7、まれに膝管内乳頭粘液性腫瘍8および結腸癌9を含む他の腫瘍タイプから生じる。さらに、これらの腫瘍はゆっくりと成長する傾向があり、患者由来の異種移植片(PDX)モデルでは生着率が低くなります10,11。これらの課題を考えると、PMPの病理生物学と、これらの癌細胞がどのように腹膜表面に動員され、増殖し、免疫監視から逃れるかを理解し始めるために、この疾患を研究するためのモデルを開発する必要があります。

腫瘍スライスは、全身の血管循環から切り取られていますが、細胞外マトリックス、間質細胞、免疫細胞、癌細胞、内皮細胞、神経などの細胞および無細胞成分を含んでいます。この半無傷の微小環境は、これらの細胞タイプの機能的研究を可能にし、これは癌細胞のみからなる3Dオルガノイド培養と比較して独特の利点である12。オルガノタイプスライス培養はいくつかの点で有利であるが、それらはまた、拡張可能な3Dオルガノイドと比較して本質的に低スループットベースのアプローチであり、多重化された治験治療薬スクリーニングに適している131415。PMPの場合、PMP由来のオルガノイドの信頼できる樹立と永続的な継代を文書化した報告はありません16。これは、PMP由来の腫瘍細胞の増殖が遅いこと、およびこれらの粘液性腫瘍内に見られる悪性上皮細胞の数が少ないことが原因である可能性があります。PMPを研究するためのモデルを開発する必要性を考えると、有機型スライスはこの病気を研究するのにユニークに適しています。ヒト検体からPMPを調製、イメージング、および分析するためのプロトコルを紹介します。

プロトコル

すべての組織の非同定と取得は、カリフォルニア大学サンディエゴ校でIRB承認プロトコルの下で実施されました。

1.組織処理および培養のためのヒトPMP組織の調製

  1. 腫瘍組織の輸送と微小解剖
    1. 輸送および培養培地の準備:10%(v/v)ダルベッコ改変イーグル培地(DMEM)、10%FBS、2 mM L-グルタミン、1%ペニシリン/ストレプトマイシン(ペンストレプトレプ)を完成させます。
    2. 組織が到着したら、IRBが承認したプロトコルに従って、PMP腫瘍組織を完全なDMEMを含む直径6cmの35皿に移します。
    3. メスを使用して、液化ムチンから腫瘍の固形領域を微量解剖します。組織の固形部分に埋め込まれたムチン結節は切断できますが、腫瘍のすべての液化領域を取り除きます。液化したムチンや粘液性の高い組織領域を除去することに加えて、メスで切断するのが難しい組織を取り除きます。組織の結節を約1 cm3 の大きさの小さな断片に切ります。
      注:ムチンと高密度ECMを除去した腫瘍結節を取得することは、ビブラトームを使用した切断を成功させるために不可欠です。品質管理として、研究室に到着した腫瘍組織は、最初に病理学者によって切断され、その後、UCSDバイオリポジトリによって配布されます。大網ケーキの緩和的デバルキングを受ける組織ドナーは、疾患負荷が高いことを考えると、このプロトコルに最適なケースであり、研究のための組織利用可能性の増加からより多くのスライス生産を可能にします。
      注意: 人間の組織を扱うには、バイオセーフティレベル2(BSL2)認定が必要です。BSL2手順のトレーニングについては、教育機関に確認してください。
  2. アガロース調製および組織包埋
    1. 組織到着の同じ日に、FBSを含まないPBS中の低溶融アガロースの5%溶液を調製します。アガロース溶液はすぐに沸騰する傾向があるため、細心の注意を払ってください。
      注:低溶融アガロースは、組織片の埋め込みに不可欠です。高溶融アガロースは高温で固化し、埋め込まれた場合、組織スライスの生存率を低下させます。さらに、溶解溶液中のFBSは沈殿物を形成する原因となります。
    2. 得られたティッシュ片を液体なしで6 cmの皿に入れます。6 cmの皿に2〜3個以下を置いて、他の組織を邪魔したり触れたりすることなくアガロースキューブとして除去できるようにします。
    3. 液体5%アガロース溶液を、1cm3 の腫瘍標本を含む6cmディッシュに加える。標本を覆うのに十分なアガロースを追加します。加えたら、埋め込んだティッシュを4°Cの冷蔵庫に30分間入れます。
  3. ビブラトームへの組織標本の取り付け
    1. 固化した寒天を冷蔵庫から取り出し、メスを使用して組織の幅よりわずかに大きいアガロースキューブを切ります。
    2. ビブラトームステージに瞬間接着剤を塗布し、アガロースキューブを瞬間接着剤にそっと置きます。接着剤が固まるまで1〜2分待ちます。この時点で、組織を含むアガロースキューブをステージに固定する必要があります。
    3. ブレードをビブラトームに固定し、組織切片の希望の厚さを設定します。共焦点顕微鏡を使用した最適な下流イメージングのために、切片は約150〜250ミクロンでなければなりません。 スタート ボタンを押して、組織が完全に切断されるまでアガロース組織ブロックの切断を循環し続けます。
      注意: 組織が切断されていない場合、またはアガロースキューブから外れている場合は、組織を高濃度のアガロースに埋め込むことを検討し、密度が高すぎて切断できない、またはビブラトームブレードに付着する可能性のある追加の組織片を切り取ります。
  4. 透過性インサートでの組織スライスの培養
    1. 透過性メンブレンの上に2 mL、下に3 mLの完全DMEM培地を加えて、培養用の透過性インサートプレートを準備します。
    2. 細い絵筆を使用して組織スライスをビブラトムの切断チャンバーからそっと持ち上げ、完全なDMEM培地を含む透過性培養皿に2〜4スライスを入れます。24時間後、ピペットを使用して培地を吸引し、培地を新鮮な培地と交換します。
    3. スライスを37°C/5%CO2で最大7日間培養し、24時間ごとに培地を交換します。この時点で、細胞殺傷(ボルテゾミブ)およびテスト可能な化学療法のコントロール5-フルオルラシル(5-FU)を培地に追加して、薬理学的介入を実行します。
    4. 培養の7日後、非薬物処理条件(完全DMEM)下での0日目時点(切断直後)と比較して約15%〜25%の生存率の損失を予想する。カルセインAM(生)やヨウ化プロピジウム(死体)などの生死生存率色素を使用して生存率を測定します。

2. 生体組織切片の共焦点イメージング

注:有機型腫瘍スライスが準備されたら、効率的で最適化されたダウンストリーム分析を実行するために、組織の生存率を決定することが不可欠です。腫瘍標本の厚さが150〜250 μmであることを考えると、共焦点顕微鏡または2光子顕微鏡は、 その場での研究を決定するために広視野顕微鏡よりも強く推奨されます。フローサイトメトリーは、生存率および細胞集団を決定するためにも使用することができる(方法は下記にある)。しかし、フローサイトメトリー解析中に空間分解能が失われ、機械的および化学的方法で腫瘍スライスを分離する必要があるため、生存率は過小評価される可能性があります。

  1. 試薬調製と実験セットアップ
    1. 共焦点イメージング分析用の腫瘍スライスを、1%FBSを含むPBSを含む12ウェルディッシュの単一ウェルに配置します。カルシウムイメージング実験のために、PBSの代わりに、以下のように調製された細胞外カルシウム溶液中でスライスをインキュベートする:125 mM NaCl、5.9 mM KCl、2.56 mM CaCl 2、1 mM MgCl2、25 mM HEPES、0.1% BSA、pH 7.4、3 mMグルコース、滅菌濾過。この溶液を事前に準備し、4°Cで最大1か月間保管してください(セクション2.1.8を参照)。
    2. メーカーが推奨する濃度とプロトコルに従って、サンプルをイメージング色素( 材料の表を参照)で染色して、組織スライスの生存率を決定します。生存率色素を添加した後の10分〜1時間の画像。
    3. インキュベーション後、スライスを1%FBSを含むPBSを含む光学的に透明なガラス底のペトリ皿に移し、共焦点イメージングデバイスでのイメージングに使用します。
      注:共焦点イメージングには、ニコンA1R共焦点プラットフォームが使用されました。
    4. 共焦点イメージングソフトウェアを開きます。10倍でイメージングを開始し、XYZイメージングモードを選択します。次に、取得設定を次のように構成します。
      1. 次のレーザーをオンにします:488 nmと561 nm。レーザー出力を1%にしてゲインを100に調整します。画像取得中に必要に応じてレーザー出力とゲインを調整します。必要な画質に応じて、解像度を高くするには、512 x 512ピクセルまたは1024 x 1024ピクセルを選択します。
    5. [ インターロックの削除] を選択し、[ スキャン ] を選択してイメージングを開始します。
    6. カルシウムイメージングの場合は、組織スライスをFluo-4-AMで光から保護して1時間インキュベートします。Fluo-4-AMをDMSOに溶解するためのメーカーのプロトコルに従ってください。1時間後、スライスを細胞外カルシウム溶液で3回洗浄し、ステップ2.1.4〜2.1.5のイメージングプロトコルに従います。
    7. Fluo-4-AMを用いたカルシウムイメージング実験では、XYZTを選択し、561 nmレーザーの選択を解除すると、取得速度が向上します。さらに、レゾナンススキャナーを使用して、イメージングの速度をさらに向上させます。

3. フローサイトメトリーのためのリビングスライスの分離

注:生体組織スライスの解離は、イムノタイピング、生存率の評価、薬理学的介入後の細胞集団の変化の調査など、いくつかのダウンストリームアプリケーションに使用できます。解離プロセス中に組織の品質と細胞の生存率が維持されるようにするための措置を講じる必要があります。

  1. 1 mLピペットチップの端から小片を切り取り、開口部を広げて、1分間ピペットで激しく機械的解離できるようにします。
  2. 高グルコースDMEM、10%穏やかなコラゲナーゼ/ヒアルロニダーゼ(GCH)、10%FBS、および10%DNaseI(1 mg/mLストック)からなる1 mLの消化バッファー中で、スライスを37°Cで5〜15分間回転させてインキュベートします。
    注:コラゲナーゼ/ヒアルロニダーゼのバッチ依存的な変化がしばしば見られます。
  3. インキュベーション中に機械的解離を2〜3回使用して組織の激しい破壊を行う。完全な消化の証拠がないか、5分ごとに目で消化を確認してください。必要に応じて、ステップ3.1.4に進んで酵素消化を停止します。
  4. 消化したら、50 mLのコニカルチューブの上に置いた70 μmフィルターの上にスライスと消化媒体をピペットで固定します。滅菌鉗子またはピペットを使用して大きな部分を選びます。
  5. プラスチック製の5 mLシリンジの鈍い後端を使用して、解離していない大きなスライスをマッシュアップし、2%FBSを含む4 mLのPBSでさらに洗浄します。
  6. 解離した細胞上清を50 mLコニカルチューブに入れ、300 x g で5〜10分間回転させます。上清を除去し、2%FBSを含む1mLのPBSでペレットを洗浄する。
  7. フローサイトメトリー用のサンプルを調製するには、50 μLのヒトFcブロックを含むブロッキングバッファーを加え、室温で15分間放置します。2%FBSを含む50 μLのPBS中のそれぞれの抗体を用いて細胞外染色を行う。
    注:多くのフローサイトメトリーシステムがあります。サンプルをフローサイトメトリー用に準備したら、デバイスの操作に関する製造元のプロトコルを参照してください。

4. 生細胞スライスを用いた生残性・増殖解析のための薬理学的介入

注:有機型腫瘍スライスが準備されたら、薬物検査、siRNA、生体組織スライスのウイルス感染など、いくつかの方法を使用して介入アプローチを実行できます。ここでは、薬物検査と、局所増殖を使用した生存率分析を含む下流の機能読み取りについて説明します。

  1. 10 mLの10%v/v完全DMEMを10%FBS、2 mM L-グルタミン、1%ペン連鎖球菌で調製します。
  2. コントロールおよび治療条件のために5 mLの完全な培地を分注します。残りの5 mLの培地にボルテゾミブ(2 μM)を添加し、ポジティブコントロールとして腫瘍スライスの細胞死を誘導します。
    注:ボルテゾミブは、高濃度で、細胞死を誘導する細胞傷害性薬物です。他の細胞傷害性薬物は、細胞殺傷のポジティブコントロールとして使用され得る。
  3. 透過性ディッシュ上にプレーティングされた2〜4枚の組織スライスを使用して、ステップ4.2で調製した培地をディッシュに加え、ステップ2.1.2に記載されている共焦点顕微鏡を使用した下流の生存率LIVE/DEAD分析に使用する追加の併用療法を追加するか、順次一致したスライスを使用した市販の発光生存率分析を使用します。
    注:逐次スライスマッチングは、発光生存率アッセイが細胞のATP含有量に依存していることを考えると、発光生存率分析に不可欠です。細胞溶解中に内部コントロールが失われるため、結果は生細胞の開始数に依存するため、同様のサイズのスライスが必要です(つまり、不均衡なスライスは不均衡な結果をもたらします)。ユーザーがシーケンシャルスライスを取得しない場合、発光生存率分析は不可能であるため、別の生存率評価方法(フローサイトメトリーまたは共焦点イメージングベースの生細胞分析)が必要になります。
  4. 組織スライスを完全なDMEMを含む培養物に2〜5日間放置し、培地、ボルテゾミブ、5-FUを1日おきに交換します。
  5. 発光生存率解析では、500 μLのPBSを12ウェルディッシュに加え、ペイントブラシを使用して順次一致した組織スライスをPBS溶液に移すか、1 mLピペットを吸引して穏やかに移します。
  6. PBSを取り出し、調製した発光生存率解析液を加える。試薬の調製については、取扱説明書を参照してください。
  7. 条件ごとに500 μLの発光生存率溶液を加え、室温で30分間シェーカー上でゆっくりと回転させながらインキュベートします。発光プレートリーダーを使用して発光を読み取ります。

結果

要するに、PMPからのヒト腫瘍標本は、IRB承認プロトコルの下で取得されます。組織を調製し、微小解剖し、アガロース型で固化させ、ビブラトームを使用して切断する(図1A;ビデオ1)。切断された組織スライスは、透過性インサートメンブレン上に置かれて培養され(図1B)、in situでのイメージングアッセイ、フローサイトメトリー...

ディスカッション

この原稿では、ヒト腹膜偽粘液腫(PMP)腫瘍標本の培養、尋問、分析に使用できる技術について説明しています。私たちは、腫瘍免疫微小環境を調べるために多数のダウンストリーム機能アッセイと、ベンチからベッドサイドまでのテストのためのプラットフォームを利用しました。

この方法は私たちの手の中で非常に効率的ですが、ビブラトームを使用して腫瘍標本を切...

開示事項

著者は、競合する経済的利益はないと宣言しています。

謝辞

著者らは、顕微鏡UCSD専門がんサポートセンターP30助成金2P30CA023100を支援してくれたムーアがんセンターのイメージングコア施設のKersi Pestonjamaspに感謝したいと思います。この研究は、JoVE出版助成金(JRW)と、エリザベスとアドクリーマーズの財産、ユースケ家族財団、消化器がん研究基金、腹膜転移研究基金(AML)からの寛大な贈り物によってさらに支援されました。

資料

NameCompanyCatalog NumberComments
1 M CaCl2 solutionSigma21115
1 M HEPES solutionSigmaH0887
1 M MgCl2 solution SigmaM1028
100 micron filterThermoFisher22-363-549
22 x 40 glass coverslipsDaiggerbrandG15972H
3 M KCl solutionSigma60135
5 M NaCl solutionSigmaS5150
ATPγS Tocris 4080
Bovine Serum AlbuminSigmaA2153
Calcein-AM InvitrogenL3224
CD11b Biolegend101228
CD206 Biolegend321140
CD3Biolegend555333
CD4 Biolegend357410
CD45 Biolegend304006
CD8 Biolegend344721
CellTiter-Glo PromegaG9681
DMEM Thermo Fisher11965084
DPBS Sigma AldrichD8537
FBS, heat inactivatedThermoFisher16140071
Fc-block BD Biosciences564220
Fluo-4Thermo FisherF14201
Gentle Collagenase/Hyaluronidase Stem Cell7912
Imaging ChamberWarner InstrumentsRC-26
Imaging Chamber PlatformWarner InstrumentsPH-1
LD-Blue BiolegendL23105
L-Glutamine 200 mMThermoFisher25030081
LIVE/DEAD imaging dyesThermofisherR37601
Nikon Ti microscope NikonIncludes: A1R hybrid confocal scanner including a high-resolution (4096x4096) scanner, LU4 four-laser AOTF unit with 405, 488, 561, and 647 lasers, Plan Apo 10 (NA 0.8), 20X (NA 0.9) dry objectives. 
Peristaltic pump IsamtecISM832C
Propidium IodideInvitrogenL3224
Vacuum silicone greaseSigmaZ273554-1EA

参考文献

  1. Bevan, K. E., Mohamed, F., Moran, B. J. Pseudomyxoma peritonei. World Journal of Gastrointestinal Oncology. 2 (1), 44-50 (2010).
  2. Votanopoulos, K. I., et al. Appendiceal cancer patient-specific tumor organoid model for predicting chemotherapy efficacy prior to initiation of treatment: A feasibility study. Annals of Surgical Oncology. 26 (1), 139-147 (2019).
  3. Holliday, D. L., et al. The practicalities of using tissue slices as preclinical organotypic breast cancer models. Journal of Clinical Pathology. 66 (3), 253-255 (2013).
  4. Koerfer, J., et al. Organotypic slice cultures of human gastric and esophagogastric junction cancer. Cancer Medicine. 5 (7), 1444-1453 (2016).
  5. Misra, S., et al. Ex vivo organotypic culture system of precision-cut slices of human pancreatic ductal adenocarcinoma. Scientific Reports. 9 (1), 2133 (2019).
  6. Ohnishi, T., Matsumura, H., Izumoto, S., Hiraga, S., Hayakawa, T. A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Research. 58 (14), 2935-2940 (1998).
  7. Seidman, J. D., Elsayed, A. M., Sobin, L. H., Tavassoli, F. A. Association of mucinous tumors of the ovary and appendix. A clinicopathologic study of 25 cases. The Amerian Journal of Surgical Pathology. 17 (1), 22-34 (1993).
  8. Mizuta, Y., et al. Pseudomyxoma peritonei accompanied by intraductal papillary mucinous neoplasm of the pancreas. Pancreatology. 5 (4-5), 470-474 (2005).
  9. Gong, Y., Wang, X., Zhu, Z. Pseudomyxoma peritonei originating from transverse colon mucinous adenocarcinoma: A case report and literature review. Gastroenterology Research and Practice. 2020, 5826214 (2020).
  10. Fleten, K. G., et al. Experimental treatment of mucinous peritoneal metastases using patient-derived xenograft models. Translational Oncology. 13 (8), 100793 (2020).
  11. Kuracha, M. R., Thomas, P., Loggie, B. W., Govindarajan, V. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment. Cancer Medicine. 5 (4), 711-719 (2016).
  12. Jiang, X., et al. Long-lived pancreatic ductal adenocarcinoma slice cultures enable precise study of the immune microenvironment. Oncoimmunology. 6 (7), 1333210 (2017).
  13. Sundstrom, L., Morrison, B., Bradley, M., Pringle, A. Organotypic cultures as tools for functional screening in the CNS. Drug Discovery Today. 10 (14), 993-1000 (2005).
  14. Liu, L., Yu, L., Li, Z., Li, W., Huang, W. Patient-derived organoid (PDO) platforms to facilitate clinical decision making. Journal of Translational Medicine. 19 (1), 40 (2021).
  15. Croft, C. L., Futch, H. S., Moore, B. D., Golde, T. E. Organotypic brain slice cultures to model neurodegenerative proteinopathies. Molecular Neurodegeneration. 14 (1), 45 (2019).
  16. Carr, N. J. New insights in the pathology of peritoneal surface malignancy. Journal of Gastrointestinal Oncology. 12, 216-229 (2021).
  17. Votanopoulos, K. I., et al. Outcomes of repeat cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for the treatment of peritoneal surface malignancy. Journal of the American College of Surgeons. 215 (3), 412-417 (2012).
  18. Weitz, J., et al. An ex-vivo organotypic culture platform for functional interrogation of human appendiceal cancer reveals a prominent and heterogenous immunological landscape. Clinical Cancer Research. 28 (21), 4793-4806 (2022).
  19. Pitoulis, F. G., Watson, S. A., Perbellini, F., Terracciano, C. M. Myocardial slices come to age: an intermediate complexity in vitro cardiac model for translational research. Cardiovascular Research. 116 (7), 1275-1287 (2020).
  20. Habeler, W., Peschanski, M., Monville, C. Organotypic heart slices for cell transplantation and physiological studies. Organogenesis. 5 (2), 62-66 (2009).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

190

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved